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CIRCULAR ISLANDS AS RESONATORS OF
LONG-WAVE ENERGY

By W.SUMMERFIELDt}
Department of Earth and Planetary Sciences, The Johns Hopkins University,
Baltimore, Maryland, U.S.4.

(Communicated by O. M. Phillips, F.R.S. — Received 8 June 1971)
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A study is made of the long gravity waves trapped around isolated, cylindrically symmetrical island—
continental shelf topographies. Numerical evaluation of the discrete complex spectra of the trapped
wave modes reveals that the oscillations are of two, essentially different kinds. The ‘trapped-leaky’
wave-modes are the analogue of the trapped (edge) wave-modes along straight shorelines and many of
their properties, including the Coriolis split in frequency, are deducible from the simpler geometry. On
the other hand, the ‘shelf-island’ modes have no counterpart in the motions trapped along extended
shorelines; they are virtually generated in the ocean round a vertical-walled circular island of radius
equal to that of the island-shelf system at the sea floor.

It is shown that the trapped wave-modes do not necessarily have the ‘inner critical circle’ property
elucidated by Longuet-Higgins (1967) for the similar modes of oscillations of the waters over a circular
seamount. On the other hand, the modes do have ‘wave’ domains adjacent to the coast whenever the
undisturbed depth of water at the island’s shoreline is zero; there may still be critical circles in the shallow
water region over the continental shelf. For those islands where the water has non-zero depth at the
shoreline, the computation verifies Longuet-Higgins’s hypothesis (Longuet-Higgins 1967, § 13) concerning
the affect on the trapped wave-modes of the presence of an island in the middle of the sea-mount.

It is also shown that the fundamental ‘trapped-leaky’ modes dominate the disturbance observed at the
coast when plane wave radiation from the ocean interacts with the island-shelf system. For the particular
example where the excitation has the form of a rectilinear pulse, it is shown that power spectra of the
resulting oscillations exhibit some of the features of the spectra of real wave records made at islands
following the passage of tsunamis.
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362 W.SUMMERFIELD

1. INTRODUCTION

Close scrutiny of surface wave data from islands has, in some instances, lead to the suggestion
that the unbounded waters around such features have natural periods. In recent, independent
investigations, Longuet-Higgins (1967) and Shen, Meyer & Keller (1968) show how free modes
of oscillation may be possible, owing to the phenomenon of wave refraction. The modes consist
of waves which are guided around the island by the bottom contours of the surrounding sea-bed
the waves being effectively trapped in the shallow near-shore water as a result of wave refraction
in the steep continental slope region; there exists a discrete set of resonance frequencies, deter-
mined by the requirement that the waves remain in phase after the complete circuit. However,
such a description glosses over the difficulties inherent in mathematical analyses of waves in
water near shores, where progress has usually been dependent on the introduction of suitable
approximations. In this example, the authors choose quite different approaches. Longuet-
Higgins bases his analysis on the linear shallow-water theory of waves, whereas Shen e¢ al.
develop an approximate theory based on the smallness of the sea-bed slope; the latter leads to the
geometrical optics theory of surface waves of Keller (1958). Nevertheless, there is remarkable
agreement in the results where overlap occurs, especially with respect to the characteristics of
the free wave-modes (see Shen ef al. for a full discussion). In particular, both authors show that
the motions must leak energy from the shallow-water region to the open ocean whenever the
latter has finite depth. But, in its present form, the method of analysis of Shen ¢t al. does not
permit computation of the dissipation rates. On the other hand, Longuet-Higgins evaluates the
complex eigenfrequencies of the oscillations for a model circular sea-mount, verifying that the
‘topography-induced’ leakage of energy may be exceedingly slow for some modes. However,
Shen et al. readily extend their investigation to topographies where an island sits on top of the
sea-mount, in contrast with Longuet-Higgins who infers what the effect will be (of such an island
on possible free wave-modes) from the profiles of the oscillations for the sea-mount model. Finally,
Shen ¢t al. (1968) restrict attention to cylindrically symmetrical topographies, whereas Longuet-
Higgins (1967) discusses the effects of a non-circular shape on the frequencies of the free modes,
and points out conditions under which free modes may be expected for more general bottom
topography.

We also note that the authors use the term ‘trapping’ in different senses. Longuet-Higgins
only calls those free modes of oscillation where the leakage of energy from the shallow-water
region is extremely small, ‘trapped modes’. Shen et al., use the terminology in a more formal
sense to refer to the wave pattern, not the wave energy.

In this paper, we examine in more detail the ‘topography-induced’ leakage of energy for the
free wave motions around cylindrically symmetrical island—continental shelf topographies. We
adopt the shallow-water theory of waves as the basis of our investigation, noting that the studies
by Shen et al. (1968) and Longuet-Higgins (1967) are in substantial agreement for the lowest
modes in the spectra of waves over a circular sea-mount. This simplication permits computation
of the complex eigenfrequencies. However, it should be pointed out that application of the results
may be limited, for it is well known that shallow-water theory yields an adequate description of
the properties of small amplitude waves of frequency o, propagated in water of uniform depth #,,
provided o2h,/g < % say, where g is the acceleration due to gravity. With o24,/g written in terms
of the dimensionless frequency v and parameter ¢ introduced in § 3, itisseen (§ 3) that our analysis
may be restricted to those free wave-modes where ev < 0.6a,/k,; a, is the radius of the island-shelf
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ISLANDS AS RESONATORS OF LONG-WAVE ENERGY 363

complex at the sea floor, and #, is the depth of the ocean. With 4, = 30km and A, = 4km,
0.6a,/hy = 5. To look ahead, it will be seen that the investigation is at least valid for the most
important free wave-modes, the fundamental modes at small z; 7 is the dimensionless azimuthal
wavenumber, which takes only integral values. On the other hand, the application of the results
to real islands will be merely limited to those oscillations with periods greater than 5 min.

First, we focus attention on the particular case where the circular island is surrounded by a
continental shelf of uniform width and depth, and where the continental slope is a discontinuity
in the depth. Although not oceanographically realistic, the model has the advantage that one
can readily deduce the properties of the free wave-modes from their analytic representation;
further, the limiting case where the island has zero radius is the circular sea-mount already
investigated by Longuet-Higgins (1967). It is shown in § 3 that the dimensionless eigenfrequencies
v can be evaluated when numbers are assigned to # and the two parameters ¢ and «, where ¢ is
the square root of the ratio of the depths of water on and off the continental shelf, and « the ratio
of the radius of the island to that of the shelf. The computation reveals that the presence of the
island on the underlying sea-mount does not introduce any further free modes of oscillation than
those which can exist over the sea-mount when the island is absent. The computation also reveals
that there are two essentially different kinds of free wave-mode, one of which is, as expected,
analogous to the trapped (edge) wave-modes along straight coastlines (appendix A). Members of
this class are called almost trapped (the terminology of Longuet-Higgins 1967) when the topo-
graphy-induced leakage of energy is negligible; otherwise, they are termed ‘leaky’ modes. As
might be expected, the magnitude of the energy dissipation is found to be critically dependent
on the angle at which the mode’s wave components on the shelf meet the continental slope; the
leakage is extremely small when the angle of incidence is greater than the critical angle (cf.
Longuet-Higgins 1967).

In §7, we consider how far the results can be generalized to other topographies displaying
cylindrical symmetry. Itisseen that much can be said, particularly concerning the fundamental
trapped wave-modes once it is noted that their dimensionless eigenfrequencies are the roots of
the derivatives of Hankel functions whenever the continental shelf region is virtually non-existent.

In the intervening sections, a study is made of the disturbance observed at the shoreline due to
plane wave radiation from the ocean striking the island-continental shelf system. The excitation
has the form of a simple harmonic wave in § 4, and the form of a pulse in § 5.

In § 6, we investigate the influence on the almost trapped modes of the Coriolis forces due to the
rotation of the earth.

Finally, in § 8, we seek evidence of the existence of the free modes of oscillation in wave records
made at islands following the passage of tsunamis.

2. MATHEMATICAL FORMULATION

Let » and 0 be polar coordinates in the plane, undisturbed water-surface, centred on the
circular island of radius @, (figure 1), and let (7, #) denote the undisturbed depth of fluid. Our
island-shelf complex is modelled by the function

o) =l < <)
where a,( > a,), b, and hy( > %) are constants. Around the island, there is an annular shallow-
water region of uniform depth #;, which is contiguous with the deep water of depth 4, across the

(2.1)

33-2
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364 W.SUMMERFIELD

discontinuous change in depth at 7 = a,. In the following sections, the shallow and deep-water
regions will be referred to, respectively, as the skelf and the ocean, the discontinuity at r = a,, as
the edge, and the vertical wall at 7 = a,, as the coast.

Let {(r, 0, t) and u(r, 0, t) denote, respectively, the vertical displacement of the free surface and
the vector horizontal velocity of the fluid. On eliminating # from the linearized, shallow-water
equations of motion for the non-rotating, inviscid, homogeneous fluid

oufot = —g. Vg, (2.2)
and the equation of continuity oglot+ V. (hu) = 0, (2.3)

"y A

- (1) B

7777,

e ]

Ty

(®

Ficure 1. Circular island with shelf: (a) plan view, with island shaded in and edge
denoted by broken circle; () radial cross-section.

where § has been assumed small in magnitude compared with %, one finds that { must satisfy
the equation

V.hV 16—2]§~0 (2.4)
7] Rl :
190 0 10 (k0
for all r > a;, where V.hV = ;-a—r(rha—r) +75§(;5§) .

With £ given by (2.1), and the motion assumed simple-harmonic in time, the last equation
simplies to the Helmholtz equations

[V2+k%] gz* =0 (Z = 1’ 2)> (25)
where L(r,0,8) = §*(r,0) et
2 10 10
2 = [N
Vissetre TR
ki = U/(ghz)% (l = 1> 2)’ (2‘6)

and where the suffix notation has been introduced to associate £ with the region in which % = 4.
The separated-variable solutions of (2.5) are well known. In this investigation, the functions of
the radial coordinate will be the Bessel functions of the third kind (Hankel functions)

H® = J,+iY,, H® = J,—i¥,

n

(2.7)
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ISLANDS AS RESONATORS OF LONG-WAVE ENERGY 365

where J,, and Y, are, respectively, those of the first and second kinds. The reader is referred to
Longuet-Higgins (1967, §5) for a study of these functions very relevant to the analysis of this
paper.

At the edge, it shall be required that

i(ay, 0,1) = Ey(as, 0,1), (2.8)

and that the normal component of the volume (mass) flux, ~u- n, also be continuous, where 7 is
the unit normal to the discontinuity. Expressed in terms of ¢, the latter condition requires that
(for all 0 and ©)

}za—gl-:/z% at r=a (2.9)

Yor T oy & :

Bartholomeusz (1958) has shown that the imposition of these conditions yields correct results for
the reflexion coefficient of long waves normally incident on a straight step. Observational
evidence (see, for example, Snodgrass, Munk & Miller 1962; Munk, Snodgrass & Gilbert 1964)
suggests that shorelines are good reflectors of long, non-breaking waves of small amplitude.
Accordingly, we require #*n = 0 at the coast. The corresponding condition on ¢ follows from

(2.2), namely
o Jor=0 at r=a,. (2.10)

Together with the differential equations (2.5) these boundary conditions determine the free
modes of oscillation of the waters around the island; in the ocean, the solution must represent
a wave motion propagated away from the edge because of the leakage of energy from the shelf.

3. FREE WAVES AROUND THE ISLAND

Studies on the trapping of surface wave energy along extended coastlines and over sub-
merged mountain ranges (see, for example, Munk ¢/ al. 1964; Garipov 1965; Buchwald 1969)
suggest that the shallow-water region of the island-shelf system (2.1) can be regarded as a
‘waveguide’. Comparison with waveguide mode theory in other fields (see, for example, Budden
(1961) for that of radio waveguides) indicates that the most appropriate form of the expression
for the free modes of oscillation will be

H ' (kyay) H (kyr) — HLY (kyay) H (k)
H (kyay) HP (kyay) — HY (kyay) HP (kyay) (0<a <r<ay)

Hip (kyr)
(k) =)

4(r, 0,t) = Aexp {i(n0 —ot)}

(3.1)

where the prime denotes differentiation with respect to the argument, and 7 is integral in order
that the solution be single valued in 6. The motion on the shelf is the sum of two systems of
harmonic waves (at least, for large n and real o), each of which propagates at the speed (gh,)? of
long waves in shallow water of depth %, along straight-line trajectories all tangent to the inner
critical circle (terminology of Longuet-Higgins 1967, § 6) of radius r = n/k,. The waves

A(o) exp{i(n0 — ot)} HP (kyr) ~ A(0) ( )%exp {i(n(tanu—u) — ix+nb—ot)}, (3.2)

nr tanu
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366 W.SUMMERFIELD
where cosu = n/k,r, with ;7 > n, are directed towards the ocean, while the component motions

B(0) exp{i(nf — ot)} HD (kyr) ~ B(0) ( )% exp {i(—n(tanu—u) + }w+n6 — ot)}, (3.8)

nwtany

are propagated towards the coast; 4(o) and B(o) represent the additional terms in the expression
(3.1). Provided n/k, < a,, these wave trains are incident at the edge at the angle

¢; = arcsin (n[k, a,). (3.4)

The integral constraint on 7 implies that the waves remain in phase after each complete circuit
around the island. In the ocean, there is one system of waves propagated away from the island
along straight trajectories tangent to the outer critical circle of radius r = n/k,. The solution is
illustrated in figure 2.

e —
r " ~T
hl l 1
daaey
Wk ng (/ nand hz

[+ Qs h2 o —>f

TTITIITIITITT T T TTTT TTTTITITIIT
(@) (b) ()

Ficure 2. The form of free waves around the island: (@) plan view of the wave crests (full curves) when the waves
on the shelf are reflected from the coast [a > o, defined by (3.20)]; () a radial section when a > ay (cf.
figure 7); (c) a radial section when the inner critical circle is on the shelf, i.e. when & < a;, (cf. figure 7).

The representation (3.1) meets all the conditions imposed on the solutions of (2.5), except
(2.9). This latter condition requires that

(bl/bz)%H%) (kyas) [H%y (kra1) Hg%)'(/ﬁ a,) “Hgf)’(/ﬁal) Hgy(klaz)]
-—H(,})'(/szaz) [H%)l(klal) ngz)(kﬂz) “H%)’(kl‘h) H%)(/flaz)] =0 (a%0), (3.5)

where, for an island-shelf complex of specified dimensions, the frequency o is the only variable,
and is a function of the parameter n. Thus, the eigenfrequencies of the free modes of oscillation
are the roots of (8.5). Using known properties of the Bessel functions, it can be argued (Summer-
field 1969) that these zeros cannot be real. Further, owing to the natural leak of energy to infinity,
the motions are physically realistic only if they decay in time, i.e. o must have a negative
imaginary part. Hence we seek those zeros of (3.5) in the lower half of the complex o plane.
However, it proves advantageous to first examine the limiting cases of the model, when a; = 0
and when g, = a,.

When g, = 0, the depth function (2.1) models the circular sill investigated in Longuet-Higgins
(1967). The corresponding free mode expression and characteristic equation can be obtained from
(3.1) and (3.5), respectively, in the limit where @, approaches zero with 7( > a;) held fixed, on the
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ISLANDS AS RESONATORS OF LONG-WAVE ENERGY 367

assumption that o remains finite. The ocean part of the free mode expression is as given in (3.1),
while that on the shelf becomes

g(r,0,t) = Aexp {1(n0 - O't)}. Ju(ky7) [T (K, a0);
the eigenfrequencies are given by the zeros of
(hufho) H (ks a5) Ty (kyap) — HGY (Kyas) T, (kyas) = 0. (8.6)

The limit process suggests that, for models where 0 < a; < 1, there exist eigenfrequencies of the
motions (3.1) near (in the complex plane) those of the oscillations for the circular sill, 4, = 0;
the corresponding motions are little affected by the presence of ‘small’ islands on the underlying
sill.

When @, = a,, the depth function (2.1) models a cylindrical island standing in water of
uniform depth %,. The ocean part of (3.1) is the appropriate free mode expression; (3.5) yields
the corresponding characteristic equation,

HY (kyay) = 0. (8.7)

Exact eigenfrequencies for the free modes of oscillation of the waters over the circular sill have
been calculated (Longuet-Higgins 1967) in terms of the dimensionless frequency

v = oa,/(gh)}, (3.8)
for several values of the constant parameter
e = (hi/ho)},
from its range 0<e<1, (3.9)

where small (large) € corresponds to a circular sill with large (small) differences in the depths of
water at the edge. For our more general island-shelf complex, the eigenfrequencies can be
computed in terms of these same dimensionless quantities, provided that a number is also

assiened to the constant parameter
5 P a = 41/42,

from its range, 0<axgl, (3.10)

where a = 0 and 1 correspond, respectively, to the limiting circular sill and isolated, vertical-
walled island models. Then we have from (2.6)

kiag =v, kyay=ev, kia; = o, (8.11)
and it follows that the dimensionless eigenfrequencies of the wave motions (8.1) are the zeros of
eH(ev) J4() —HY () J,(0) (o = 0),
eH P (ev) .[H (av) HP' (v) — HP (o) H ()]

—HY (o). [HY (a)) HO () = HY (e0) HO()] (0 < a < 1),
(3.12)

E(v; €, 2,n)

in the lower half of the complex plane.

Now, J_, = (-1)*J, and H_, = (—1)"H, (see, for example, Abramowitz & Stegun 1965).
It follows that E(v; €, a, —n) and E(v; ¢, «,n) have identical roots, which implies that similar
modes (3.1) can be propagated in either direction along the shelf, as one expects. Thus, we need
only consider n > 0.

The cutin the complex v plane associated with the Hankel functions in £ will be taken along the
negative imaginary axis. With the cut in this position, the roots of £ in the lower left half-plane
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368 W.SUMMERFIELD

reflect (in the cut) those in the lower right half-plane. Consequently, only the fourth quadrant
need be searched for the roots of E. These zeros will be written in the form

v =§—iy, (3.13)

so that #( > 0) is the damping factor of the mode with frequency &.

One could evaluate the zeros of E(v; €, a,n) for particular island-shelf complexes (¢ and «
specified constants) by adopting a scheme of computation similar to that described in Longuet-
Higgins (1967, § 6) for finding the roots of £(v; ¢, 0,7); such an approach merely permits one to
comment on the relative rates of damping of the various modes. On the other hand, the fact that
equation (3.6) can be derived from (3.5) suggests that we regard the roots of E(v; €, 0, n) as known,
and proceed in the following manner with the computation. With z and ¢ held fixed, we take a
zero of E(v; €, 0, n) as the first approximation in Newton’s rule for the numerical computation of
roots of E(v; €, Aa, n), where Ao denotes a small positive increment; successive approximations
rapidly converge onaroot of £(v; €, Aa, n). We now take this newly computed zero of E(v; ¢, Aa, n)
as the first approximation in Newton’s rule for the evaluation of roots of £(v; €, 2Aa, ) ; conver-
gence on a root of E(v; €, 2Aa, n) is again found to be rapid. By repeated use of this step-by-step
process, we find that we can trace out in the complex plane, a curve (sequence) of the roots of
E as a increases from zero (n and € held fixed). We find that there is a similar curve of zeros
attached to every root of E(v; ¢, 0, 7). Furthermore, each sequence is uniquely determined by the
starting-point root of E(v; €, 0, ) and the numbers assigned to € and 7, and can be traced through
to any value of « < 1. When « approaches 1, the a-curve of the zeros of E either tends to infinity
or to a root of (3.7); in the latter case, the limit point is the zero of H{'(ev). Finally, by applying
Rouché’s theorem to the variation in the argument (computed numerically) of E(v; e, a,n)
around the perimeter of the square (0 < § < 50, 0 <# < 50), we find that every root of
E(v; ¢, a,n) within the square can be accounted for by the step-by-step method of calculation.

Thus it appears that the presence of an island (« > 0) on the immobilized, underlying sill
(as, hyy by and hence ¢, held fixed) of the model (2.1) does not introduce any further free modes of
oscillation than those which can exist over the sill when the island is absent. Furthermore, an
a~curve of the zeros of £ traces the changing eigenfrequency of one particular mode, of constant
wavenumber n/a, along the edge, caused by the island ‘growing’ (« increasing) on the under-
lying sill, from zero radius (¢ = 0). We will see that much more can be deduced from the a-curves
concerning the nature of the motions than just rates of decay; the interpretation is aided by the
results of a similar study on the trapped wave-modes propagated along a shelf where the coast
and edge are straight and parallel to each other (appendix A).

The remainder of this section is devoted to a detailed analysis of the free modes of oscillation.

The a-curve method of computation reveals that there are two types of trapped wave-mode
(3.1), represented by different sets of the roots of £, and hence, of the zeros of E(v; ¢, 0,7n). The
Jirst system of the roots of E(v; e, 0,n) (main sequence in the terminology of Longuet-Higgins
1967, §6) contains an infinite number of members in one-to-one correspondence with the
sequence of points 1) L k1 8y farctanhe (k= 0,1,2,...) (3.14)
in the complex plane; the latter are the large (|ev| > n) analytical zeros of E(v; ¢, 0,7). When ¢ is
small, the one-to-one correlation is not altogether obvious, for those first-system roots of E(v; €, 0, n)
which are farthest (the left-hand, lowest frequency members) to the left of the line

£= n/e, (3'15)
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in the complex plane (figure 3) are much nearer the real axis than the values (3.14); see also
figures 5 (a), 6 (a) of Longuet-Higgins (1967). The modes represented by these left-hand zeros have
extremely slow leakage of energy to the ocean; the oscillations are almost trapped over the circular

0__ . 20 £ 40
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0.2+ i

arctanh 0.2
b = X K i X e X X X o X X X o X = e o
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1 1

Enl l «i—i=n/e

F1cure 3. The one-to-one correlation for the first system roots of E(v; €,0,n); the solid line joins the left-hand members
of the first-system zeros (dots) of E(v; 0.25,0,3) and the dashed line, those of (3.14) (crosses) started at k£ = 0.
The roots of E representing almost trapped modes lie in the region between the lines § = n and £ = nfe.
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Ficure 4. The n zeros of HY' (), n = 0(1)8, near the curve (in the complex plane) joining ¥ = n to ¥ = —n through

y = —in. 0.66274... (Olver 1954; also see Abramowitz & Stegun 1965). The zeros in the right half plane are
denoted p,,; where n is the order of the Hankel function and / has the value shown on the graph. Those zeros
with Re () < 0 lie on the sheet —§n < argy < — §w of the Riemann surface.

sill. Modes represented by zeros farther to the right (£ increasing) are wavelike both inside and
immediately outside the edge and decay more rapidly in time.

The second system of the roots of E(v; ¢, 0, n) contains a finite number of members in one-to-one
correspondence with the zeroes of HP'(ev). For convenience, the roots of H{'(v) on the sheet
—1n < argv < $rn of the Riemann surface will be designated x,; where # is the order of the

34 Vol. 272. A.
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Ficurke 5. a-curves of the roots of E(v; € = 0.25(0.25)0.75, &, n = 0(1)7); note the logarithmic scale for 3, compared
tothelinearscale of §. Each a-curveislabelled by its value of ¢, usually near the starting-point & = 0.0; the heavy
dots on the curve are spaced at intervals of 0.1 in a, starting from « = 0.0, with the first dot which can be
plotted separately from that at e = 0.0 also labelled. The portions of the a-curve which have been drawn as
full lines, in genecral represent almost trapped modes. At larger values of & these curves are continued as broken
lines. Other a-curves are broken lines for all c.

(a) a-curves of the roots of E(v; ¢,a,n = 0); (¢) a-curves of the roots of E(v; ¢, 0, n = 4);
(b) a-curves of the roots of E(v; €,a,n = 1); (f) a-curves of the roots of E(v; €,0,n = 5);
(¢) oa~curves of the roots of £(v; ¢,a,n = 2); (g) a-curves of the roots of E(v; ¢,a,n = 6):

(d) a-curves of the roots of E(v; ¢,a,n = 3); (h) o-curves of the roots of E(v; 6,0,n = 1T).
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ISLANDS AS RESONATORS OF LONG-WAVE ENERGY 371

Hankel function and / has the value shown in figure 4 (cf. figures 5 to 7 (5) of Longuet-Higgins
1907). The corresponding root of H{} (ev) will be denoted

6 = Pont[€3 (3.16)

then ¢, is the root of (3.7) nearest to the real axis (having the smallest imaginary part).
We anticipate (cf. figure 3 with figure A 35) that the mode represented by the eigenfrequency
of E(v; €,0,n) correlated with the kth point (3.14) resembles the Ath ledge wave-mode (A 2) of

0 10 20 £
10 L

10

€:0.50 €:=0.80 N €7080 = -=e~_
A=0.1 Q:0.1¢y =

Sogaom ‘e
. s

€ 2 N .3 £

o7g ™, €:073 ST~

(Paoire, & R T

X NN Y

10° ooy, #a=02

=
S97%

10"
F1cure 5 (¢). For legend see p. 370.

wavenumber m = n/a, along the edge, and so has £ nodal circles on the shelf. Then we expect the
a-curve of the roots of £ started on this eigenfrequency to follow a path in the complex plane
similar to that traced out by the frequency of the £th ledge wave-mode as the width of the ledge
goes to zero (appendix A). Thus, we anticipate that the a-curve started on the lowest frequency
(k = 0) member of the first system of the roots of E(v; €,0,n) ends on ¢,,, and that the a-curve
started on the jth (j = £ > 1) member is asymptotic to the value (cf. (A 14))

J—%H= ; arctanh €

V=T 1—a

(G=1,2,3,..), (3.17)

as a approaches 1; the latter are the large (|ev| > n, |av| > n) analytical zeros of
E(v;e,0 < a < 1,n).

Figure 5 plots, on a linear &, logarithmic # scale, a sufficient number of the a-curves started on
Jirst-systemroots of E(v; € = 0.25,0,n = 0(1) 7) to verify this pattern, together with all the a-curves
attached to the second-system roots of E(v; 0.25,0, n); the one-to-one correlation between the latter
roots and the ¢,;( = #,,/0.25) defined in (3.16) is clearly seen, for the zeros are close by and, with
the exception of that nearest to €,,, joined to the ¢,; by a-curves in the limit « = 1. Although
figures 55, ¢ show that, at n = 1, 2, the a-curve pattern for the first-system roots does not conform
with that conjectured...for the a-curve emanating from the kth (k > 0) firsi-system root of

34-2
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ISLANDS AS RESONATORS OF LONG-WAVE ENERGY 373

E(v; 0.25,0, ) approaches the value (3.17) where j = £+ 1 when « tends to 1 ... close inspection
of all the subfigures reveals that the postulated pattern evolves as n increases, with the second-
system zero of E(v; 0.25, 0, n) nearest to €,, supplying the ‘missing’ a~curve (a complete descrip-
tion is given in Summerfield (1969)). This latter point is clarified in figure 6, which replots the
a~curves ending on €,,, in part (a), and those corresponding to j = 1 and 2 in (3.17), in part (4);
a-curves emanating from roots of E(v; 0.25,0,0) can be, and are, included in figure 66.
Accordingly, we introduce the notation that (cf. appendix A)

V= glc_ink’ (3.18)
0 A | E— | E—
102 .
- 3
10° - 3
| yas :
L€=0.70 "8 TN e et e - ———— e ]
Y ]
[es ]
L _
mr I
10‘) E L 1 A I I 1 1 ) ) L 1 1 i ]

Ficure 5 (f). For legend see p. 370.
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denotes any eigenfrequency on the a-curve emanating from the kth (> 0) first-system root of
E(v; € < 2/r, 0,n); the limitation, € < 2/x, will become apparent later.

Confirmation that the mode represented by v;, resembles the £th ledge wave oscillation (A 2)
is provided by the free mode expression itself. In figure 7, there are plotted the radial cross-
sections of (3.1) corresponding to the eigenfrequencies v,, »; and v, (n = 5, € = 0.25, « as shown
in figure 7); note that the dimensionless radial variable
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p = rla, (3.19)
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F1GURE 5 (g, ). For legend see p. 370.


http://rsta.royalsocietypublishing.org/

A
/’A\\
I~
L A

L/;

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

A
/) \
=X ‘\\

r

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ISLANDS AS RESONATORS OF LONG-WAVE ENERGY 375

has the range p > «, where p = « at the coast, p = 1 at the edge, and p > 1 in the ocean. As
expected, the profiles show, respectively, 0, 1 and 2 nodal circles (zero crossings) on the shelf.
Furthermore, the profiles in figure 7a are for v, to the left of the line (3.15); figure 5 f shows that

0 10 20 ¢
108 e
i (a)
s : 0 20 : I
- -1 10 5 T T T T l T T T T l T T T T ] T T T T I T T T T l ¥ T
' i I (b) ]
104 3 o 3
L - ner R
r ] 5 ]
E = 10—33. =
z ] : ;
10-2E- = = 3
= = 101 =
gl . o )
0.1
E 3 mE E
10()"_ - . ~
i N ] B
] I
E e P me ne o ": :
101 SRR N TSN SRR DR 101:

Frcure 6. Clarification of the role of the a-curve of the zeros of E started on the root of E(v; 0.25, 0,7) nearest to
€20, in the evolution (as 7 increases) of the a-curve pattern representing the ‘trapped-leaky’ modes; the dots
on each a-curve have the same significance as in the previous figure. (a) The a-curves ending on €,y; (b) the
a~curves which asymptote to the values (3.17) where j = 1,2 when « approaches 1.0.

the modes have very small damping factors, and so are almost trapped on the shelf. One sees clearly
the exponential decay in wave amplitude in the ocean, away from the edge out to the outer
critical circle of radius p = n/(e. £,), characteristic of the perfectly trapped ledge wave oscillations
(A 2). Table 1 records the values of the eigenfrequencies of the almost trapped modes (3.1) at
n = 5, ¢ = 0.25 for several « from its range (3.10), together with the similar values at n = 3 and
n="1.


http://rsta.royalsocietypublishing.org/

AGHORS SoCTETY A

PHILOSOPHICAL
TRANSACTIONS

THE ROYAL
SOCIETY A

PHILOSOPHICAL
TRANSACTIONS
OF

376 Ponmloaded fom Sy QERESH AT D

=06 l (a)

10+ e
=04 _~ =08

B undisturbed
0 @=01 surface

-10r

10

[y

~10H T
| | L L | | | | |

. ¥
1 undisturbed =095 e

-1 surface T

(el
L B e
/
i
|

LN T T N B B}
S
i
=
@
=]
[
/
i
1
I
I

(=)

T T T T T
\\
7
i
|
I
i
ll
/

(=}
T T T
i
\

i

]
i
/

! |
0.4 0.8 edge 1.2 16 2.0
dimensionless radial variable p = 7[a,

Ficure 7. Radial sections of the wave form (3.1) for eigenfrequencics on the a-curves emanating from the 0, 1st and
2nd first-system roots of E(v; 0.25,0, 5). The values of a for which the profiles are plotted are marked on the
appropriate graphs. (a) Graphs of the real part of the radial component of (3.1) for various v, (top), v, (middle)
and v, (bottom) to the left of the line (3.15) in the complex plane, e.g. at & = 0.4 in the top figure,

vy = 8.556—10.0003

and ata = 0.3 in the bottom figure, v, = 14.9661 —¢0.07099 [sece figure 5( f)]. The imaginary (90° out of phase)
part of the radial component of (3.1) is, in all cases, virtually zero on the shelf. (b) Plots of the real (full curves)
and imaginary (broken curves) parts of the radial component of (3.1) for v, (top), v, (centre two) and v, (bottom
two) at larger . The v, and v, lie to the right of the line (3.15); the profiles show the ‘leaky-wave’ nature of
the modes when the shelf is narrow.
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ISLANDS AS RESONATORS OF LONG-WAVE ENERGY 377

TABLE 1. ACCURATE VALUES OF THE FREQUENCIES, RATES OF DAMPING, CRITICAL RADII, RESPONSE
COEFFICIENTS AND ROTATION-INDUCED ‘BEAT FREQUENCIES’ FOR THE LOWEST ORDER ALMOST
TRAPPED MODES (3.1) AT n = 3,5, 7 AND € = 0.25, 0.50

critical Coriolis
radii split in coastal
frequency damping ——*—— frequency amplitude max |B,]
24 & Nx nfEy  njeky (6.6) IAnkI IBnk[ |/1nk| (4.9)
n=3¢= 025 :
0.0 6.2092 0.1246 x 101 0.48 1.93 0.0323 0.0579 0.0579 — 18.59
9.4563 0.1566 0.32 1.27 0.0366 0.2055 0.2055 —_ 5.25
12.8183 0.3383 0.23 0.94 —0.0222 0.3097 0.3097 — 3.66
0.1 6.2089 0.1246 x 101 0.48 1.93 0.0324 0.0579 0.0579 0.0023 18.59
9.4536 0.1561 0.32 1.27 0.0372 0.2050 0.2049 0.0280 5.25
12.8030 0.3358 0.23 0.94 —0.0192 0.3083 0.3070 0.1025 3.66
0.2 6.1963 0.1215x 101 0.48 1.94 0.0365 0.0569 0.0569 0.0172 18.72
9.3467 0.1401 0.32 1.28 0.0648 0.1898 0.1869 0.1852 5.34
12.4542 0.3078 0.24 0.97 0.0610 0.2926 0.2797 0.5213 3.64
0.3 6.1049 0.1026 x 101 0.49 1.97 0.0708 0.0506 0.0505 0.0470 19.70
9.0407 0.1172 0.33 1.33 0.1588 0.1713 0.1685 0.3352 5.75
12.5590 0.3945 0.24 0.96 0.0789 0.3458 0.3866 0.6811 3.92
0.4 58991  00753x10-1  0.51 2.03 0.1565  0.0419  0.0418  0.0701 22.20
9.1622 0.1630 0.33 1.31 0.1929 0.2230 0.2358 0.4342 5.78
13.8647 0.5243 0.22 0.87 0.0326 0.3893 0.5468 0.6686 4.17
0.5 5.7404 0.0696 x 101 0.52 2.09 0.2466 0.0426 0.0425 0.0861 24.45
10.0302 0.3363 0.30 1.20 0.1775 0.3500 0.4515 0.6144 5.37
0.6  5.8337 0.1061 x 101 0.51 2.06 0.3087 0.0612 0.0614 0.1190 23.16
11.9990 0.7780 0.25 1.00 0.0571 0.5073 1.172 0.9534 6.02
0.7 6.4015 0.3065 x 10— 0.47 1.87 0.3402 0.1263 0.1300 0.2134 16.96
15.9687 1.0945 0.19 0.75 —0.0152 0.4144 1.803 0.8379 6.59
0.8 7.0918 1.9837 x 101 0.38 1.52 0.3734 0.3598 0.4727 0.5515 9.53
0.9 10.0200 25.2031 x 10-1 0.30 1.20 0.5939 0.1276 9.100 1.152 14.44
n=>5¢e=025

0.0 8.6464 0.3613 x 10-3 0.58 2.31 0.0154 0.0103 0.0103 — 114.4
12.1245 0.1091 x 10-1 0.41 1.65 0.0223 0.0537 0.0537 — 19.68
15.3583 0.9563 x 10-1 0.33 1.30 0.0331 0.1571 0.1571 — 6.57

0.1 8.6464 0.3613 x 103 0.58 2.31 0.0154 0.0103 0.0103 0.0001 x 101 114.4
12.1245 0.1091 x 10-1 0.41 1.65 0.0223 0.0537 0.0537 0.0003 19.68
15.3582 0.9562 x 10-1 0.33 1.30 0.0331 0.1571 0.1571 0.0026 6.57

0.2 8.6461 0.3611 x 103 0.58 2.31 0.0154 0.0103 0.0105 0.0003 114.4
12.1200 0.1083 x 101 0.41 1.65 0.0231 0.0534 0.0534 0.0076 19.72
15.3260 0.9239 x 101 0.33 1.30 0.0379 0.1533 0.1528 0.0633 6.62

0.3 8.6373 0.3542 x 102 0.58 2.32 0.0177 0.0102 0.0102 0.0020 115.0
12.0059 0.0924 x 101 0.42 1.67 0.0483 0.0478 0.0477 0.0397 20.66
14.9661 0.7099 x 10-1 0.33 1.34 0.1102 0.1304 0.1289 0.2101 7.26

0.4 8.5556 0.2996 x 103 0.58 2.34 0.0424 0.0091 0.0091 0.0061 121.1
11.6696 0.0692 x 101 0.43 1.71 0.1385 0.0413 0.0413 0.0700 23.85
15.1772 1.0719 x 101 0.33 1.32 0.1404 0.1810 0.1885 0.2892 7.03

0.5 8.3137 0.1993 x 10-3 0.60 241 0.1239 0.0070 0.0070 0.0097 141.4
11.8728 0.1151 x 101 0.42 1.68 0.1725 0.0628 0.0631 0.1003 21.92
16.7166 3.0426 x 101 0.30 1.20 0.1333 0.3297 0.4182 0.4521 5.50

0.6 80995  0.1729x10-%  0.62 247 02238  0.0070  0.0070  0.0122 163.1
13.1514 0.4457 x 101 0.38 1.52 0.1648 0.1440 0.1499 0.1866 13.45
20.0970 9.8305 x 101 0.25 1.00 0.0192 0.5306 1.544 0.8688 6.28

0.7 8.3013 0.3529 x 103 0.60 2.41 0.3009 0.0126 0.0126 0.0204 142.6
15.8731 3.3892 x 101 0.32 1.26 0.1877 0.3954 0.6022 0.4925 7.11
0.8 9.6061 3.1440 x 103 0.52 2.08 0.3364 0.0512 0.0514 0.0665 65.39
23.9041 20.4017 x 101 0.21 0.84 —0.0816 0.2883 6.709 1.030 13.15
0.9 14.2944 324.3310x 103 0.35 1.40 0.3784 0.5407 0.9238 0.6536 11.39

35 Vol.272. A,
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TAaBLE 1 (cont.)

critical Coriolis
radii split in coastal
frequency damping ——*——— frequency amplitude max |B,|
@ & N nfg, nje&,  (6.6) 4] [Bul [l (4.9)
n="1¢€¢=0.25
0.0 10.9776 0.9025 x 105 0.64 2.55 0.0102 0.00169  0.00169 — 747.7
14.6605 0.4843 x 103 0.48 1.91 0.0123 0.0116 0.0116 — 95.89
g 18.0547 0.7339 x 10—2 0.39 1.55 0.0167 0.0440 0.0440 — 23.96
(/(\]/AJ 0.1 10.9776 0.9025 x 10~8 0.64 2.55 0.0102 0.00169  0.00169 0.0004 x 104 747.7
~ 14.6605 0.4843 x 103 0.48 1.91 0.0123 0.0116 0.0116 0.0002 x 10—2 95.89
: 18.0547 0.7339x 10-2  0.39 1.55 0.0167 0.0440 0.0440 0.0003 x 101 23.96
>.,[ >-‘ 0.2 10.9776 0.9025 x 105 0.64 2.55 0.0102 0.00169  0.00169 0.0446 x 104 747.7
O = 14.6604 0.4842 x 103 0.48 191 0.0123 0.0116 0.0116 0.0208 x 10—2 95.90
I~ 23] 18.0533 0.7324 x 102 0.39 1.55 0.0169 0.0439 0.0439 0.0297 x 10-1 23.97
9] 5 0.3 10.9771 0.9013 x 10-8 0.64 2.55 0.0103 0.00168  0.00168 0.6374 x 10— 748.0
14.6458 0.4725 x 10—3 0.48 1.91 0.0148 0.0114 0.0114 0.2575 x 10—2 96.56
E O 17.9382 0.6371 x 102 0.39 1.56  0.0357 0.0398 0.0398 0.2893 x 101 24.97
%0}

0.4 10.9613 0.8692 x 10-5 0.64 2.55 0.0139 0.00164  0.00164 3.662 x 10— 755.9
14.4324 0.3484 x 10—2 0.48 1.94 0.0609 0.0093 0.0093 0.9573 x 10—2 106.8
17.5544 0.5157 x 10—2 0.40 1.60 0.1188 0.0371 0.0371 0.5821 x 101 28.74

0.5 10.8293 0.6605 x 10—5 0.65 2.59  0.0493 0.00137  0.00137  10.25x 104 826.4
14.1314 0.3007 x 103 0.50 1.98 0.1496 0.0093 0.0093 1.458 x 102 123.5
18.4340 1.4016 x 102 0.38 1.52 0.1171 0.0732 0.0738 0.9272 x 101 21.06

0.6 10.5110 0.4006 x 10-5 0.67 2.66 0.1450 0.00103  0.00103  14.48x 10—¢ 1030.4

PHILOSOPHICAL
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14.8671 0.9407 x 10-3 0.47 1.88 0.1600 0.0205 0.0205 2.667 x 10-2 87.17
21.0355 9.5122 x 10-2 0.33 1.33 0.1135 0.2112 0.2320 2.170 x 10-1 9.76

0.7 103927  0.4717x10-5  0.67 2.69 0.2483  0.00132 0.00132 20.56x10~¢  1120.9
17.4011  11.5293 x 10—3 0.40 1.61  0.1457 0.0872 0.0883 8.819x 10—2 30.64
26.0991 112.9711x 10~2 0.27 1.07 0.1617 0.5299 2.277 8.520 x 101 8.06

0.8 11.2923 3.2098 x 10-8 0.62 248 0.3231 0.00488  0.00488 62.74x 104 608.0
23.0419 504.0856 x 10—3 0.30 1.22  0.1992 0.4881 1.028 54.67 x 10-2 8.16
0.9 16.2360 1250.0078x10-5  0.43 1.72 0.3349  0.1488  0.1518  13.36x 102 48.56

critical Coriolis
radii split in coastal
frequency damping ——*—— frequency amplitude max|B,|
n o a & N nfEy  nfeky (6.6) [ A | Bl [ A (4.9)
1 e = 0.50

</—;Lj/<‘ 3 0.0 5.6323  0.6323 0.53 1.07 0.1691 0.5166 0.5166 —_ 1.63
| 0.1 5.6322  0.6321 0.53 1.07 0.1691 0.5166 0.5165 0.0155 1.63
— 0.2 5.6274  0.6241 0.53 1.07 0.1673 0.5130 0.5087 0.1186 1.63
< 0.3 5.5826  0.5660 0.54 1.07 0.1659 0.4812 0.4514  0.3439 1.60
> >~ 0.4 5.4265  0.4491 0.55 1.11 0.2187 0.3968 0.3435  0.5388 1.53
o = 0.5 5.2204  0.3858 0.58 1.15 0.3229 0.3394 0.3011  0.6266 1.56
ﬁﬁ E 0.6 5.1110  0.4355 0.59 1.17 0.4339 0.3500 0.3608  0.7330 1.66
Q) 0.7 5.1409  0.6604 0.58 1.17 0.5548 0.3862 0.5659  0.8987 1.71
I O 0.8 5.1416  1.1125 0.58 1.17 0.5664 0.2891 0.8753  0.8740 1.57
—~ 0.9 49831 1.5673 0.60 1.20 0.4380 0.1497 1.156 0.6647 1.48
—n 5 0.0 8.0208 0.2194 0.62 1.25 0.1046 0.2439 0.2439 — 2.22
<7 0.1 8.0208 0.2194 0.62 1.25 0.1046 0.2439 0.2439  0.0002 2.22
) O 0.2 8.0207  0.2193 0.62 1.25 0.1046 0.2438 0.2438  0.0049 2.22
E = 0.3 8.0170  0.2176 0.62 1.25 0.1051 0.2426 0.2422  0.0332 2.23
OL<) 5 0.4 7.9775  0.2012 0.63 1.256 0.1126 0.2308 0.2267  0.1133 2.25
Ln 0.5 7.8217  0.1555 0.64 1.28 0.1561 0.1952 0.1858  0.2171 2.39
9 Z 0.6 7.5997  0.1255 0.66 1.32 0.2425 0.1742 0.1678  0.2836 2.67
E § 0.7 7.5575  0.1594 0.66 1.32 0.3374 0.2154 0.2235  0.3779 2.80
=l 0.8 7.9425  0.3799 0.63 1.26 0.4331 0.3410 0.4743  0.6061 2.50

0.9 8.5729  1.2340 0.58 1.17 0.4307 0.2616 1.362 0.7609 2.21
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TasLE 1 (cont.)

critical Coriolis
radii split in coastal
frequency damping ——*—— frequency amplitude max|B,|
n a & N nl§e  nfeky (6.6) [ 4] [ Bl [A ] (4.9)
€ = 0.50 (cont.)

7 0.0 104438 0.7243x 101  0.67 1.34 0.0646 0.1427 0.1427 — 3.94
13.8227  0.7745 0.51 1.01 0.1327 0.5376 0.5376 — 1.39

0.1 10.4438 0.7243x10-1  0.67 1.34 0.0646 0.1427 0.1427  0.0002x 10-2  3.94
13.8227 0.7745 0.51 1.01 0.1327 0.5376 0.5376  0.0006 x 10-1  1.39

0.2 10.4438 0.7243x 10~  0.67 1.34 0.0646 0.1427 0.1427  0.0270x 10—2  3.94
13.8226  0.7745 0.51 1.01 0.1327 0.5376 0.5375  0.0663x 10-1  1.39

0.3 10.4437 0.7239x 10~  0.67 1.34 0.0646 0.1427 0.1427  0.3923x 10-2  3.94
13.8179  0.7674 0.51 1.01 0.1317 0.5364 0.5319  0.8580x 101  1.39

0.4 10.4356 0.7117x10-*  0.67 1.34 0.0659 0.1410 0.1408  2.335x 10-2 3.96
13.7045  0.6604 0.51 1.02 0.1343 0.4976 0.4435  0.3830 1.34

0.5 10.3587 0.6126x 10~  0.68 1.35 0.0825 0.1272 0.1261  7.468 x 102 4.12
13.3183  0.5530 0.53 1.05 0.2248 0.4154 0.3789  0.6223 1.37

0.6 10.1122 0.4193x 101  0.69 1.38 0.1510 0.1007 0.0991 12.52 x 102 4.73
13.4217  0.9128 0.52 1.04 0.3363 0.4682 0.7323  0.8415 1.60

0.7 9.9029 0.3922x 10-1  0.71 1.41 0.2520 0.1061 0.1059 16.64 x 102 5.40
13.9109 2.1188 0.50 1.01 0.3540 0.2346 1.773 0.7587 1.67

0.8 10.2299  0.9556 x 10~  0.68 1.37 0.3526 0.2041 0.2180 29.84 x 10-2 4.56
0.9 11.6647 7.0216x10-1  0.60 1.20 0.4231 0.3988 1.001  70.95x 10-2 2.85

Also, the sequences in the individual graphs of figure 7 clarify the effect that the island,
‘growing’ on the underlying sill, has on the individual modes. The profiles in the individual
graphs of figure 74 plainly show not only that the amplitude of the mode decays rapidly towards
the coast from the inner critical circle (of radius p, = n/£;) while the latter is on the shelf (a < py,),
but also that the growing island has negligible effect on the mode while it is interior to the inner
critical circle, verifying a conjecture of Longuet-Higgins (1967, § 9). Figure 5 and table 1 concur
that £, is little changed while a < p,. As a increases from zero, both £, and 3, decrease slowly

until
o =nl§, = o, say, (3.20)

i.e. until the coast coincides with the mode’s inner critical circle. At « = a;, the mode takes its
greatest amplitude at the coast (compared with unity at the edge). With further increasing «,
the situation is as described in appendix A for the ledge wave-mode (A 2) with the width of the
ledge decreasing; the components (3.3) and (3.2) of the motion on the shelf, reflected alternately
from the coast and internally from the edge, have to turn in order that the phase change incurred
in the crossing of the shelf compensates for the decreasing width of the latter. The frequency &,
increases, and the angle of incidence at the edge ¢, = arcsinn/§,, decreases towards the critical
angle ¢ = arcsine (appendix A). At the same time the damping factor 7, increases; the mode
leaks energy to the ocean at a greater rate. The plots in figure 7 (2) show that the amplitude at the
coast decreases, the nodal circles (if any) move towards the edge, and the exponential decay in
amplitude in the ocean becomes less noticeable. Finally, as the a-curve passes through the
region about the line (3.15), i.e. as ¢; decreases through ¢, 9, increases rapidly, and the profile
(figure 75) changes from that of an almost trapped wave motion to that of a ‘leaky wave’ (appendix
A); the profile is ‘wave-like’ in the ocean, even near the edge. Indeed, one can roughly calculate

35-2
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380 W.SUMMERFIELD

the value of @ at which the transition occurs; the cutoff shelf width for the mode [cf. appendix A]
is equal to 1 — f;, where £, is defined in (A 13). In other words, we have set (cf. (3.17) and (A 14))

a=1-p, (3.21)

which equates the long-wave speeds across the shallow-water regions (normal to the coast) of the
models defined, respectively, by (2.1) and (A1). As might be expected, the formula is most
accurate when 7 is large, with £ and ¢ small, i.e. when the influence of the curvature of the shelf
is least.

The description can be extended to the higher order modes, i.e. to the modes represented by the
v, emanating from the first-system roots of E(v; 0.25, 0, 5) to the right of the line (3.15). Clearly,
these modes are ‘leaky waves’ for all a.

Thus, we see that, for the particular island-shelf systems under consideration (¢ = 0.25), there
exists an infinite number of ‘trapped-leaky’ wave-modes at each 7. The modes with frequencies
significantly less than n/e are almost trapped on the shelf; these modes can be determined, roughly,
from the simpler model (A 1) by way of (3.21). In addition, there exists a much smaller set of
free wave motions represented by the eigenfrequencies on the a-curves attached to the second-
system roots of E(v; e, 0,n) correlated with the values ¢,, where [ > 1. It is obvious that these
modes are generated in the ocean about the ‘shelf-island’ of radius @,; they are heavily damped,
and have negligible amplitude over the shelf. We now verify that the conclusions concerning
the nature of the free wave-modes (3.1) are valid for all ¢ in the range (3.9).

It has been shown by Longuet-Higgins (1967, § 6) that quite accurate values of the frequencies
of the modes, almost trapped over the circular sill, can be obtained without evaluating

E(v; 0.25,0,n).

An extension of the argument to the oscillations of the model with « %+ 0 (Summerfield 1969)
again yields accurate estimates of the frequencies of the almost trapped modes. The success of the
argument not only clearly demonstrates the waveguide nature of the shelf, but also reveals, that
the frequencies are only weakly dependent on e. It follows that, when e < 0.25, any ‘trapped-
leaky’ mode will be more effectively trapped on the shelf than the corresponding mode at
¢ = 0.25 with the same n, @ and £, for the angle of incidence (3.4) at the edge will exceed the
critical angle by a greater amount than at ¢ = 0.25. The corresponding damping factor will be
smaller, so that the eigenfrequency will be displaced towards the real axis, virtually along a line
parallel to the imaginary axis. On the other hand, when ¢ > 0.25, the leakage will be greater,
and the displacement will be away from the real axis. Figure 5 demonstrates this for ¢ = 0.50;
all the a-curves of the roots of E(v; ¢ = 0.50, «, n), corresponding to the modes represented at
¢ = 0.25, have been plotted. A careful examination of the subfigures again reveals the ‘filling-in’
role in the ‘trapped-leaky’ mode a-curve pattern played by the a-curve started on the second-
system root of E(v; 0.50,0,n) nearest to €, The fewer number of almost trapped modes is em-
phasized by the smaller number of eigenfrequencies recorded in table 1. The a-curves of the
eigenfrequencies representing ‘shelf-island’ modes confirm that these modes are little affected
by the depth of water on the shelf.

Figure 5 also plots the a-curves of the roots of E(v; € = 0.75, a, n), corresponding to the modes
represented at € = 0.25; those zeros representing ‘trapped-leaky’ modes are even farther from
the real axis than the corresponding values at € = 0.25 and ¢ = 0.50. A close inspection of these
graphs reveals that a subtle change has taken place in the a-curve pattern. At all z, the a-curve
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started on the second-system root of E(v; 0.75, 0,n) nearest to €,,, ends on ¢,,, while, for all £ > 0,
the v, asymptote to the values (3.17) where j = £+ 1, as « approaches 1. The fundamental mode
is represented by the first-mentioned a-curve at large n. It can be argued that this change in
a-curve pattern occurs when ¢ > 2/r, on the assumption that the pattern at smaller € is due to
Jirst-system roots of E(v; €, 0,n) being to the left of the line (3.15) (Summerfield 1969).

On the other hand, the change in the a-curve pattern when ¢ > 2/ allows one to predict what
happens when e approaches 1, i.e. when the ocean rises, leaving in the limit (¢ = 1), a vertical-
walled island of radius a;( = «) in an ocean of uniform depth 4,. Numerical computation verifies
that the a-curves attached to the second-system roots of E(v; ¢, 0,n) aline themselves along the
curves v = /o, whereas the v;, defined in (3.18) go to infinity, along straight lines parallel to the
imaginary axis. In other words, the only finite-valued roots of E(v;e =1, 0,n) and
E(v; e # 1,a = 1,n) are the zeros of, respectively, HP'(«v) and H(” (ev). Thus, at each n, there
exists a finite number of heavily damped modes for a cylindrical island standing in an ocean of
uniform depth.

By the use of the step-by-step method of computation, one can also show that the one-to-one
correspondence between roots of E(v; ¢, 0,n) and those of H{'(ev) carries over onto the sheet
—3n < argv < — }w of the Riemann surface (Summerfield 1969). The represented motions will
not be considered here.

Finally, we note that the zeros of H{'(ev) are roots of £ only when « = 1. In addition, the zeros
of HY (ev) are never roots of £ (Summerfield 1969), i.e. the modes (3.1) never have nodal circles
coincident with the edge. Hence, there is both mass and momentum transport across the edge
in every mode. Also, the non-vanishing of both H{'(ev) and HP(ev) when a < 1 implies that
neither square-bracketed term in (3.5) is zero; it follows that the form (3.1) of the free mode
expression is valid throughout.

4, RESPONSE AT THE GOAST TO MONOCHROMATIC RADIATION FROM THE OCEAN

In this section, we investigate the response of the island’s near-shore waters to a sinusoidal train
of plane waves incident on the edge from the ocean. Without loss of generality, the direction of
propagation of the oceanic waves may be taken along 6 = 0, i.e. to the right along the x-axis
(figure 1).

Provided o and £, are real, and are related as in (2.6) the expression

Lo = exp{i(kyrcos 0 — at)}, (4.1)

represents a simple harmonic train of long waves propagating through the ocean of the island-
shelf model (2.1). When these waves encounter the shelf one expects them to be partly converted
into motions over the shelf, and partly scattered to infinity in the ocean. At large distances from
the island it is assumed that { ~ &,.

Since ¢, can be written

Co= 3 BO[HD (kyr) + HO(kyr)] expi(nf — o)} (1 =+ 0), (4.2)

n=—o

one assumcs that the solution for its interaction with the island-shelf topography has the form

{Aan)(kﬁ) + B, HP (k) (0<ay <7 <ay),

€00 =, 2 RO (G, i) HPar) F 30T (k) (> )

n= —o

(4.3)
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382 W.SUMMERFIELD

where the terms with the coefficients 4, and B, represent the excited shelf motions, those with C,,,
the energy scattered to infinity in the horizontal plane. The coefficients are uniquely determined
by the boundary conditions (2.8), (2.9) and (2.10); one can readily verify that

2" HLH @' (ap) — 2L H Q' (a)

A M \&) g T’ (&Y
" wevE(v;e o,n)’ " mevE(v;e a,n)’ (4.4)

Cot i = (- r L2200,
where v, €, a(40) and E are as defined in (3.8), (3.9), (3.10) and (3.12), and E,(v; €, a, n) has
the same form as E but with HP (ev) and H{Y (ev), respectively, replaced by H® (ev) and HE” (ev).
With these coefficients, (4.3) yields the formal solution of the problem. We note that the corre-
sponding solution for the model where there is no island on the underlying sill (e = 0), can be
obtained from (4.3) by taking the appropriate limit (cf. § 3); the coefficients can also be deter-
mined separately from (4.4) and (4.5).

The moduli of 4,,, B, and C, represent the amplitudes of, respectively, the waves on the shelf
propagated towards the edge, the shelf~waves propagated towards the coast and the waves

(4.5)

scattered in the ocean, in response to the periodic incident wave of unit amplitude. Since o is real,
it follows from (4.4) that
|Anl = anl; (4.6)
similarly, |C, +4i*| = }. Thus, both on the shelf and in the ocean, the waves propagated towards
and away from the island have equal energy. The motions scattered in the ocean will be of no
further interest in the present context.

The disturbance in water level at the coast is found by setting 7 = ¢,( > 0) in the appropriate
part of (4.8); it is (the real part of)

g(ala 09 t) = § exp {1<n0 _ O't)} 8

—— o nleaviE(v; e, a,n)’ (4.7)

where € and a are the constants determined by the dimensions of the island-shelf complex, and »
is the non-dimensional frequency of the incident waves. Upon noting that

E(v;e,a %0, —n) = (—1)"E(v; e a,n),
one can simpify the expression to

3 ) 1 ® i"cosnl
(ar,0,1) = 2ear? exp {—iot} {E(V; €, a, 0) + 2n§1 E(v;e a,n))’

(4.8)

which form reveals the excitation along the coast to be symmetric with respect to the normal to
the incident waves which passes through the centre of the island, as one would expect. Also, at
every location, the perturbed surface oscillates with the same frequency as the incident waves.
Furthermore, the response is composed of a sum of standing waves of azimuthal dependences
cos nf, with amplitudes proportional to | E(v; €, &, n) |~ If one of the latter happens to be much
greater than all the others, the coastline response will be dominated by the corresponding cosine
term. It follows that points on the coast may exist where there is virtually no movement in the
water’s surface; intermediate spots will suffer relatively large-amplitude oscillations. In order to
discern the nature of the dependence of the | E(v; €, o, n)| ~*on the various parameters (including v),
and hence that of {(ay, 6, 1), it is first necessary to investigate the coefficients (4.4).
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Figure 8 shows representative plots of |B,| as a function of v (#, ¢ and « held fixed). One
observes that | B, | increases sharply whenever the frequency of the incident waves is near that of
an almost trapped mode (3.1) of the same along-edge wavenumber z, i.e. when v is in the neigh-
bourhood of a root of E(v; €, a, n) very near the real axis. On expanding F in a Taylor series about
such a zero, v, [defined in (3.18)], (7, < 1) it is easily argued that the peak value of the response
occurs when v = £, and that
2 |HP ()]

max |B,| =
aXl n' ne”chVkEl(Vlc; 63“9”)I,

(4.9)

furthermore, | B,| exceeds half the peak value whenever

v =&l < /37 (4.10)
With the aid of these formulae, one can deduce the dependences on the various parameters

n, € and « of the significant features of the local maxima in |B,,| from the a-curve computations
of the previous section.

103 o T T T T e T T T M 1

TTTT

102}

10t
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1072l

| . . . .
10 20
V= 0ayf (.ghl)'5

Ficure 8. Graphs of | B,| for n = 5, ¢ = 0.25, @ = 0.2 (full curve) and & = 0.7 (broken curve),
giving the amplitude of the response as a function of the frequency v of the incident waves.

Consider, for example, the magnitude of a local maximum, i.e. max |B,|. Figure 94 graphs
against « the values (4.9) associated with the zeros vy, vy and v, of E(v; 0.25, , 7) (n, ¢ and mode-
order k held fixed); as expected, max |B,| increases as the damping factor, #,, of the corre-
sponding almost trapped mode (figure 54; table 1) decreases. In particular, the greatest max | B,,|
occurs when (3.20) is satisfied (the dotted point on each curve); then max | B, | decreases rapidly
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as e increases towards the cut-off shelf width of the corresponding mode. The plots of figure 95 and
the values in table 1 reveal that max | B, | grows with increasing (e, « and £ held fixed); the rate
of increase is extremely rapid at small e(= 0.25), much slower at larger ¢ = (0.50), mirroring
the rate of decrease in the damping factors, 7,, of the corresponding almost trapped modes (3.1).
These examples show, not only how large are the amplitudes that can be built up over the shelf
by the trapping effect of the bottom topography about the island (as has already been pointed
out by Longuet-Higgins 1967, § 7)], but also that their magnitudes depend strongly on the rate
of energy loss to the ocean of the corresponding almost trapped modes which, in turn, are related
to the angles of incidence at the edge of the modes’ shelf-components. Indeed, table 1 verifies
that there is qualitative agreement between the max | B,,| and the amounts by which these angles
exceed the critical angle ¢, i.e. between max | B,| and, say, the quantities n/£, —e.

The error involved in taking the estimate (4.9) as the peak value of the local maximum (in the
graph of | B, | against ¥) can also be inferred from the numbers in table 1. The quantity (4.9)
equals | B,;|/(en;) where | B,;| is defined in (5.9). Further, the same relationship holds between
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Ficure 9. Graphs of max | B,|, (4.9), as a function of &: (¢) the local maxima corresponding to the roots v, (top),
v, (middle) and v, (bottom) of L (v; 0.25,e,7); (b) the local maxima corresponding to the zero v, of

E(v; 0.25,a,n = 3(1)8).

the similar approximation to max |4,|, and |4,,;|. But (4.6) is an identity for all ¢, «, n and real
v(# 0). Hence, it follows that the difference between |B,;| and |4,,| is an indication of the
magnitude of the error between the peak value of |B,| and the estimate given by (4.9). The
|4, and |B,;| recorded in table 1 confirm that the error is relatively small while 7, < 1.
Further computation of | B, |, as a function of v, over various z, ¢ and «, verifies that (4.10) yields
an adequate description of the width of the local maximum in the neighbourhood of v = £,
under the same condition (Summerfield 196g).

One can now resolve the circumstances under which the water level at the island’s coastline
experiences large oscillations. First, the frequency of the incident waves must satisfy (4.10) where
£, is the frequency of one of the island-shelf system’s almost trapped modes of oscillation. Then the
amplitude response function of the same order 7 is large; it dominates the set of all amplitude
response functions because the interval specified in (4.10), being small, excludes the similar
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ranges of all other almost trapped modes. Secondly, in order that | E(v; €, ¢, n)|~* be large too, one
o > a;,— 0, (4.11)

where a;, is defined in (3.20) and &,( > 0) is a small number to be determined. While & < ay, the
free mode’s inner critical circle (a wave caustic) is on the shelf (§ 3), and the exponential decrease
in the wave amplitude from there towards the coast reduces the amplitude of the forced waves
as seen at the latter boundary. On the other hand, when « > a, it is primarily the diminution
in max | B,,| which decreases the amplitude of the forced waves; the dependence of the maximum
of the radial component of (3.1) (figure 7) on the parameters », ¢ and « is much weaker than for
max | B,|. With (4.10) and (4.11) both satisfied, the expression (4.8) is dominated by the cosnf
term; figure 10 (a) demonstrates how large the fluctuations in the coastline water level can be
(at antinodes) under these conditions. Figure 105 shows what happens when (4.10) is satisfied,

requires
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O — . N
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4r- P =
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0
...2 . -
1 1 1 ((I:) | J
0° 60° 120° 180°

coast position, 0

Ficure 10. Relative amplitude versus azimuth for three response patterns (4.8) at the coast. With the real part of
(4.8) written as 4(0) cos [ot+8(0)], the solid lines represent 4(6) cos §(0) and the broken lines, 4(0); note that
0 = 0° is in the lee of the island. Note also the different vertical scales. (a) & = 0.7, ¢ = 0.25, v = 8.3013374
(table 1, n = 5); (b) & = 0.4, € = 0.25, v = 8.5555946; (c) & = 0.7, ¢ = 0.25, v = 8.2.

but not (4.11); it follows that, for any particular mode, the value of d;, required in (4.11) can be
calculated by numerical computation of | E(v; €, @, n)| over a range of « with upper limit specified
by (8.20). Finally, figure 10¢ exemplifies the case where (4.10) is not valid (and also the situation
where 7, is too large).

36 Vol. 272.  A.
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386 W.SUMMERFIELD

5. THE RESPONSE AT THE GCOAST TO A TRAVELLING PULSE

We have seen how large amplitude oscillations may be observed at the coast, due to the
incidence of simple-harmonic plane-wave radiation on the edge from the ocean. Here, we
examine the disturbance at the coast resulting from the model’s encounter with a line-pulse of
energy sweeping across the ocean.

Once it has been noticed that a straight line-pulse propagated across the ocean in the positive x
direction (along 6 = 0 in figure 1) may be represented by

o71(t —x(gh) ) = 5 f expi(hys - 1)} do, (5.1)

where 8(¢) is the Dirac delta function, # = 7 cos 0 (figure 1), k, is defined in (2.6), C is the contour
shown in figure 11, and where o = (gh,)#/a, has been introduced for convenience, the formal
solution for the motions excited on the shelf by the incidence of the pulse (5.1) on the edge follows
rapidly from (4.3). The disturbance on the shelfis given by

0
§(r,0,t) = X Py(r,t)exp{ind} (0<ay, <7< ay), (5.2)

n=—w
G, > L

9]

C;‘” CI

v-plane
cut

Ficure 11. A sketch of the contours C and C”.

where, in terms of the dimensionless quantities of § 3,

P 1 f HY (av) HP (vrlag) — HY (av) HP (vr]a,)
[¢]

w(rt) = e vE(v; €, o, n)

exp {—ivi}dy, (5.3)

and [ = t(ghy)¥a. (5.4)

Now, the integrand of P, (r,t) is regular everywhere except for a logarithmic singularity at the
origin and simple poles at the zeros of £(v; €, , n), all of which lie below the real axis. By de-
forming C into infinite semicircles, respectively, in the upper and lower half planes, one can

readily verify that Piri<—1) =0, (5.5)

and Pulry > 1) = — 2ni SUHSRSEBEII 09+ Ra(r, D), (5.6)

Jexp{—ilydy,  (5.7)

jntl @( ) (ay (2)
where _1 J‘ H® (aw) HP (vray) — HY (aw) HP (vrfay

v E(v; e, o, n)
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and the summation with respect to / extends over all the zeros of E on the sheet — In < argr < 3n
of the Riemann surface, including both first- and second-system roots and their reflexions in the
imaginary axis, which is cut along its negative section (§ 3). The contour C’ runs up the left-hand
side of the cut (from —ico to 0 with argv = §x) and down the right-hand side (from 0 to —ioo
with argv == —{x); it excludes the singularity of E at the origin from the summation. On
evaluating the residue at v = v, one finds that

La(r,t > 1) = X{Au HP (vr|ag) — By HP (vr]ay)} exp{—inf} + R, (1, 1), (5.8)
l

2in  HE (an) HY (an)

here Ay =————+— B, =Ausmer—=. 5.9
w nl - VlEl(Vl; €, a, n) ’ nl nl Hﬁf) (OLVI) ( )
Substitution from (5.8) backs into (5.2) discloses the response of the shelf to the impulse as a
sum of the free modes (3.1), each decaying exponentially in time, and a sum of transient ‘tails’,
represented by the R,.
— 7 edge
. _——’—_
——— inner
- critical —
—_—— circle ’ inner
critical
—_—— > circle
D, . D
R —_—
ray paths of ray paths of
incident incident
radiation radiation
(b)
0
edge '
g X
D 6; “E —~
©

Ficure 12. Plan view of the path of the ray DEFGH of the line-pulse (5.1) which meets the edge of the island-shelf
system (centre O) at E. The broken circle describes the inner critical circle of an almost trapped mode, and the
dash-dotted lines are representative wave rays. (a) The island is interior to the mode’s inner critical circle
(@ < ay); (b) the shelf-components of the mode are reflected from the coast (o > o, but &, < nfe); (¢) the
angle of refraction at E of the ray of the pulse, 0, = arcsin (¢sin 0,) is always less than the angle OEM = ¢,, (3.4),
for every almost trapped mode.

The formal solution for the motions scattered in the ocean as a result of the encounter between
the pulse and the island-shelf complex can be derived from (4.3) in a similar manner. Although
the scattered waves will not be examined here, some consideration has been given to them by
Summerfield (1969).

"The amplitude of each excited mode (3.1) is virtually given by the appropriate | B,;|. Table 1

36-2
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388 W.SUMMERFIELD

tabulates the values of | B,,;|, and | 4,,;|,T for the almost trapped modes represented there. We show
that these amplitudes are qualitatively consistent with a ray-theory argument for the generation
of the modes by the pulse.

Each ray path of the pulse which meets the edge (figure 12) necessarily intersects rays of every
almost trapped mode on the shelf. The angle of intersection between one such ray DEFGH of the
pulse, and the rays of one particular almost trapped mode, is a minimum, A, for that ray EM of the
mode which also meets the edge at E. Summed over every ray path of the pulse which meets the
edge, one expects this situation to correspond to the most efficient generation of the mode by the
radiation from the ocean. Consequently, the influence which the parameters z, ¢ and « (as well
as the mode-order £) exert in the excitation of the mode can be determined from their effect on
A0; the smaller (larger) A0, the larger (smaller) the magnitude of |B,;|. Figure 12¢ shows that

A0 = arcsin (n/&;) — O, (5.10)

where 0, is the angle of refraction of the ray DEFGH at the edge; it is a function of ¢ only. The
values in table 1 verify that while three of n, ¢, @ and £ are held fixed, and the fourth varied over
its range, the magnitude of | B,,;| changes in the expected manner.

The disturbance in water level at the coast is found either by setting 7 = 4, in (5.2), or by direct
integration of (4.7). With the symmetry in the zeros of E about the imaginary axis taken into
account, the appropriate expression is

Uar, 0, > 1) = 3y, cosnd{S —irexp{~ B} R(Ayp exp{—iul}) + Ry(ay )}, (5.11)
n=0 i

where y, = 1 and y,, = 2 when 7 = 0. The summation with respect to /* extends only over all
the first- and second-system roots of E(v; €, a, n) in the fourth quadrant, and

16
mlavh B (v €, a,n) "

A = (5.12)
Again, the excitation along the coast is symmetric with respect to the normal to the line-pulse
which passes through the centre of the island; the standing wave configuration results from
identical motions being propagated in opposite directions along the shelf. The initial amplitude
of each mode (3.1) at the coast is given by the appropriate |4,|; the |4,.| recorded in table 1
show that, at best, the amplitude is comparable with the corresponding | B,;.|. But, at any time
i(> 0), the amplitude of the mode is also proportional to exp {—;:7}, where #;" is its rate of
damping. Thus, sometime after the passage of the pulse, the almost trapped modes of oscillation
will dominate the contribution to the expression for §(a, 0,7) from the free waves (3.1). In order
to determine whether they also dominate the disturbance in water level at the coast it is necessary
to evaluate the R,(ay, t) for large 7.

It follows from (5.7), that gin [ exp{—ivfdv
R,(a,t) = mfo'm’ (5.13)
which can be evaluated asymptotically for large ¢ by use of Watson’s lemma. Near v = 0, one has
E@v; e, a,n) =P+ Q, (5.14)

1 If the motions (3.1) were perfectly trapped on the shelf, then |4,,;| = | B,|. The values show that |4,,;| & | B,
while 77;, < 1, but that |4, < |Bui| when 7, is larger, as one might expect.


http://rsta.royalsocietypublishing.org/

"'\
A\
JA §
A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
A

y \

Py
=\

THE ROYAL A

9

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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B2 la"l (n=0),
20t p2e—n—lo—n—1 + o + €2(1 — a2}y (n > 0),

0 i22x~lear? (n =0),
—i2-nt2p—lgn—lg—n-1{ 4 g?n — (1 — a2 }y?/(n—1)! (n > 0),

and the positive or negative sign is to be taken according as v lies to the right or left of the negative

where P~ {
(5.15)

imaginary axis. Then, as o0

4in (—io _9 .
R, (ay,t) ~ F&f “13_29‘ exp{—1ivi}dy,
Sa2- (n=0), (5.16)
= (372)' —€\3n 1+a2n_€2(1_a2n) an
(nh2 (n—1)! 9 [1+ a2 +e2(1— a2n)2f3n+l
Thus, the contribution to (5.11) from the transient ‘tails’ is dominated by Ry(ay, ) when # is
large. The following example shows that even Ry(ay, t) is much smaller in magnitude than the
amplitudes of the slowly decaying almost trapped modes for moderately large 7.

(n > 0).

TABLE 2. THE AMPLITUDES OF THE ‘TRAPPED-LEAKY’ MODES AND TRANSIENT TAILS AT
THE COAST FOR [ = 10, 30; & = 0.7, ¢ = 0.25

7= 10 7= 30
r ~ A Y r A N

n & N [ A | |[A]exp{—7%}  |R,| | 4] exp { -7} [R,|

0 5.37 —0.71 1.07 8.8 x 10~4 — 5.6 % 10-10 —
15.74 —0.83 0.66 1.6x10-¢  7.7x10-8 — 2.8x 107
26.20 —0.84 0.52 1.2%10-4 — — —

1 5.34 —~0.75 1.25 6.9% 10-1 — 2.1 % 10-10 —
15.78 —0.85 0.68 1.4x10-¢  1.0x 10~ — 1.3% 108
26.23 —0.85 0.52 1.0% 104 — — —

2 5.52 —0.24 0.66 6.0 x 10~2 — 4.9 10~ —
15.88 —~0.93 0.72 6.4%x 105  5.2x10-1 — 2.4 % 10-14
26.30 —0.88 0.53 8.0 105 — — —

3 6.40 —0.31x101 021 1.5% 101 — 8.4%10-2 —
15.97 —~1.09 0.84 1.5x10-5  2.3x10-15 — 3.8 x 1020
26.42 —0.93 0.55 5.0 x 10-5 — — —

4 7.33 —0.33x10~2  0.66x 10~ 6.4x 102 — 6.0 % 10-2 —
15.57 —~1.22 1.29 6.4%10-8  9.1x10-20 — 5.7 x 10~26
26-58 —1.02 0-58 2.1%10-5 — — —

5 8.30 —0.35%10-%  0-20x 101 2.0x 10-2 — 2.0 x 10-2 —
15.87 —0.34 0.49 1.6x10-2  3.5x10-2¢ 1.8%10-5  8.2x10-32
26.74 —1.17 0.65 5.3 x 10-6 — — —

Consider the particular island-shelf model where € = 0.25 and « = 0.7. The eigenfrequencies
of the 0, 1st and 2nd order ‘trapped-leaky’ modes at each n = 0(1) 5 are given in table 2. The
corresponding values of |A4,,| exp{—,{} and |R,(a,,¢)| (table 2) show that, by the time 7 = 10,
the amplitudes of the almost trapped modes exceed, not only the corresponding |R,,(a;, t)|, but also
|Ry(as, £)|; by the time { = 30, the amplitudes of the fundamental modes at larger n are even
more dominant. Further, no mode corresponding to a second-system root of E(v; 0.25,0.7,n) is
considered, for the amplitude of such a motion diminishes even more rapidly due to its greater
damping rate. Hence, even for moderately large 7, the disturbance at the coast is virtually a sum
(of standing waves) of fundamental almost trapped modes (3.1); the real time equivalent to a given
value f follows from the relationship vi = ot.
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390 W.SUMMERFIELD

6. ErFecT oF THE EARTH’S ROTATION

Longuet-Higgins (1967, § 10) has shown that the effect on the almost trapped waves over the
limiting cricular sill (« = 0), of the Coriolis forces due to the rotation of the Earth, is to split the
frequencies of each pair of (identical) modes propagated in opposite directions around the sill.
The splitting of frequencies would appear as a slow beat in a record of the waves at a fixed point;
numerical computation indicates that the beat period is very large. In this section, we briefly
investigate the similar split in frequency for the almost trapped waves around the circular island.

With the constant Coriolis forces included in the linearized, shallow-water equations of
motion, ¢ must satisfy (e.g. see Longuet-Higgins 1967, § 10)

[V2+KF & =0 (i=1,2), (6.1)
instead of (2.5), where K, = (2= (gh;)t (i=1,2), (6.2)
and f is the Coriolis parameter. Further, the influence of the rotation is also present in the
boundary conditions to be imposed at the coast and edge; in (2.9) and (2.10), one must substitute
0 .(f\10
é;'*‘l(—o:);a—&, (6.3)
in place of 9/dr. It follows that, on a uniformly rotating Earth, the expression for the free modes of
oscillation of the waters around the island has the same form as (3.1) provided K; replaces
k; (i = 1,2), and A (v) is substituted for HY'(kya;) (j = 1, 2) in the shelf part, where
AR ) = Kia,, HY (Kia,) — (of]o) HP (Kia,,). (6.4)
It is easily verified that the corresponding characteristic equation is
(hy/Ro)t HP (K, ay) [AR (v) AR (v) — AR (v) AR (v)] — AR (v) [4R (v) HD (K a5)
— AR () HP(K1a,)] =0 (a, % 0). (6.5)
Since | f]or| < 0.1 even for oscillations with periods as great as 1h, attention will be focused on
those roots of (6.5) where | f/o| < 1. But equation (6.5) reduces to (3.5) when f = 0. Thus, one
may anticipate that the roots of (6.5) with | f/o| € 1lie near (in the complex plane) those of (3.5).

Then, regarding that root of (6.5) near the zero oy of (3.5) as a function of f (n, a;, a5, h; and %, held

fixed), one can calculate that
ool  n(4+B)

g0 C

(a*0), (6.6)
where

A = 2 HQP (evy) [HY (awy) HY' (vy) — HP (o) HY ()]

—eH ' (ev) [HP (avy) HP (v)) — HP (om) HP (w)],

B = a(e—1) HP (ev) [HY' (aw) HP (v) — HY (om) HP(w)],

C = (n2— atf) A-+n2B +can}(e?— 1) H (evy) [HY (o) HY (vy) — HY (oov)) HY ()],
and €, « and v are the dimensionless variables introduced in § 3; the corresponding expression
when a = 0 can be found by taking the appropriate limit (cf. § 3) of (6.6). Table 1 records the
values of the real part of (6.6) for the almost trapped modes represented there. They are all positive.
It follows that the real part of the root of (6.5) corresponding to the zero v of (3.5) is
greater or smaller than £, according as the sign of nf/§, —sgn (nf]£;) —is positive or negative. But

positive (negative) sgn (nf/£;) implies that the almost trapped mode (3.1) is propagated along the
shelf in the same sense as (against) the rotation of the Earth, i.e. with the coast on its left (right)
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ISLANDS AS RESONATORS OF LONG-WAVE ENERGY 391

in the Northern hemisphere; Ball (1967) calls such waves positive (negative). Hence, for those
modes with |fJo| < 1 the positive (negative) almost trapped wave motion (3.1) has a greater
(smaller) frequency than when the Earth’s rotation is not included in the model. Longuet-Higgins
(1967) arrives at the same conclusion for the corresponding modes over the circular sill; the same
behaviour has already been noted in the edge (trapped) wave modes propagated along a straight
coast (see, for example, Reid 1958; Mysak 1968; Munk et al. 1970).

Furthermore, the rotation-induced ‘beat frequency’, A¢,, between the similar positive and
negative £th modes (3.1) is virtually f times the real part of the quantity (6.6). Those values (6.6)
recorded in table 1 show that Ag,, is of order (%,/h,) f/n while the island is interior to the mode’s

T T T T

L L 1
0 04 0.8
10 08  B04 00

1

1 1 1 1
0 04 0.8
08 B 04 0.0

F1GURE 13. Analogy between the modes (3.1) (full curves) and the modes (A 2) (dotted lines) at n = 7, ¢ = 0.25.
(a) The frequency as a function of the shelf (ledge) width; (b) the rotation-induced beat frequency (divided
by f) as a function of the shelf (ledge) width.

inner critical circle (a < a;, where o, is defined in (3.20)), of order f/n when « = «;, and for
k > 0, tends to zero as a approaches the mode’s cut-off shelf width (where §, = n/e); for the
fundamental mode, as « approaches 1 (its cut-off shelf width), AZ; approaches the real part of
nf|(n? — p2,), where p,, is that root of H{'(r) nearest to the real axis (figure 4). Figure 13 (a)
demonstrates that the analogy between the gravity waves trapped on the ledge of appendix A
and shelf of the model (2.1) is best when #z is large and the shelf is relatively narrow (o = 1,
pB =0); figure 13 (b) shows that the rotation-induced beat frequencies are comparable not only
when the respective shelves are wide (« = 0, # > 1), but also when they are narrow. The analysis
of the rotation-induced ‘beat-frequency’ for the motions on the ledge is given in appendix B.
We also note that equation (6.5) (f = 0) hasreal roots characterized by |o/f| < 1and nfjo < 0,
i.e. there exist low-frequency, negative, wave motions perfectly trapped around the island; some
consideration has been given to them in Summerfield (1969). One limiting case, for the model
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392 W.SUMMERFIELD

where a; = a,, has been analysed by Longuet-Higgins (1969), and another limiting case, where
the motions are assumed horizontally non-divergent (quasigeostrophic), has been mentioned by
Rhines (1969).

7. CYLINDRICAL SYMMETRY, THE GENERAL CASE

In § 3, we saw that the presence of the island (a, = 0) on the immobilized underlying sill little
affected those trapped wave-modes with inner critical (caustic) circles on the shelf. Also, the
analyses of §§ 4, 5 revealed that such modes would not be detected at the shoreline. Thus, in order
to generalize the results of the preceding sections to other island-shelf systems displaying

s

A ‘ r=0, r=r r=as r=rp ->7

(a) (b)
FiGUure 14. (a) Definition diagram for the angle of intersection between the wave ray AB and the position vector at
r = r,; (b) graphs of f(r) (full line) and g(r) (dashed-dotted line) as functions of 7; there exists a real path in the
(r,0) plane for the wave-ray defined by (7.5) whenr, < r < gyand r = r,.

cylindrical symmetry, we must first determine whether the possible trapped wave motions can
have inner critical circles on the shelf.

It is known that the refraction of waves in water of slowly varying depth obeys Snell’s law
(see, for example, Sverdrup & Munk 1944). This implies that for those wave trains with small
wavelength the path of each wave ray, or orthogonal to the wave fronts, is such that the functional
(Fermat’s principle of least time; e.g. see, for example, Arthur 1946)

f %‘, (7.1)

has an extremum. The limits of the integration along the path need not be specified in the present
context; ds = (r2+ #2)¥d6, where # = dr/d0, denotes an element of length along the wave-ray
at the point where the wave-velocity is ¢. For island-shelf complexes displaying cylindrical
symmetry, the water-depth % is a function of r only. Consequently, ¢ = (gh)* = C(r),in which case,
the Euler equation for the functional,

o((r+m3% dd((r2+ 1’2)%} _
5;{——0 }_E@_a—r‘{——c =90 (7.2)
can be integrated once, yielding (#)% = r¥{(r[cA)%—1}, (7.3)
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where 4 is the constant of integration, The latter constant can be computed from the condition
that, at 7 = r, the angle between the radius vector and the wave ray, ¢, is given by (figure 14 a)

sin? g = r2/(r2+72). (7.4)
On eliminating #; between (7.3) and (7.4), one finds that 4 = ¢;%sin ¢, where ¢; = ¢(rg). Thus,
the path of the wave ray passing through r = 7, is specified by

dr _ . [f3(r) }*
de—-if{g?(;-)-—i 5 (7.5)
where we have written, for convenience,

Sr) =rlrs, g(r) = ¢57%(r) sin ¢ (7.6)

We use the results of § 3 to show how (7.5) determines whether the trapped wave-modes for more
general island-shelf complexes have caustic circles on the shelf.

With £(r) given by (2.1), and @, < 7y < a,, g(r) = sin¢y when a; < r < a,and g(r) = e~1sin ¢,
when 7 > a,, where ¢ is defined by (3.9). From (7.6), one can calculate that g(r) = f(r) when
r = rgsin g and rq = rge1sin ¢g; r; and 7 exist (ay < 1y < 7, 7o > ay) provided 7y and ¢ are
suitably chosen (figure 14 (4)). On the other hand, 7; and 7y are the radii of, respectively, the
inner and outer critical circles of any mode (8.1) (r large) satisfying the condition (7.4) at r = 7,
(see § 3); equation (7.5) describes the path (straight lines) of each wave ray of the mode. In other
words, regions of the (r,0) plane where g(r) < f(r) in (7.5) (dr/d0 real) correspond to ‘wave’
domains for the mode, and regions where g(r) > f(r) (dr/df complex) are either interior to the
inner critical circle, or are between ‘wave’ domains (figure 145). On applying this interpretation
of (7.5) to the motions of the waters about other island-shelf systems displaying cylindrical
symmetry, one sees that for those models where the depth of water is zero at the coast? all trapped
wave modes have ‘wave’ domains adjacent to the coast [g(a;) = 0] (cf. Shen et al. 1968). Whether
critical circles do exist between the coast and the edge depends very much on the form of 4(r);
if such circles should exist then the outermost one is the inner critical circle in the present
terminology. Also, if the ocean is of finite depth at large distances from the island, g(r) approaches
a finite-valued constant for large 7, and so must ultimately be less than f(r). It follows that all
modes have ‘wave’ domains at large distances from the island, i.e. they all ‘leak’ energy to the
ocean, as has already been predicted (Longuet-Higgins 1967) by other arguments.

The a-curve method of computation for the eigenfrequencies of the trapped wave-modes (3.1)
disclosed that there exist two types of oscillation for the model (2.1), namely ‘trapped-leaky’ and
‘shelf-island’ motions. The latter modes were seen to be little influenced either by the size of the
island on the (immobilized) underlying sill or by the depth of water on the shelf, and their contri-
butions to the disturbances excited in the shallow-water region by radiation incident on the edge
from the ocean were negligible. Thus, although we can expect similar modes to exist for other
island-shelf systems displaying cylindrical symmetry, they will not play an important role in the
shelf dynamics. On the other hand, the response of the shelf of the model (2.1) to the external
radiation incident on the edge is dominated by that of the fundamental modes at each #, the
magnitude and duration of the disturbance being determined by the magnitudes of the damping
factors of these modes. The damping factors are themselves critically dependent on the relative
depths of the water at the edge, and on the size of the island relative to that of the underlying sill.
The first dependence stems from the sensitivity of the ¢ topographicallyinduced’ energy dissipation

1 The boundary condition to be applied at the shoreline for ‘edge’ or ‘trapped’ wave modes now requires that
the amplitude of the motion be finite there (Reid 1958; Smith 1970).

37 Vol. 272. A.
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for the mode, on the amount by which the angle of incidence (3.4) at the edge (of the mode’s
shelf components) exceeds the critical angle, and the later dependence results from the influence
on (3.4) of the width of the shelf. Further, the limiting case of the vertical-walled island standing
in water of constant depth shows that the fundamental modes always have finite eigenfrequencies.
Hence, for other island-shelf complexes displaying cylindrical symmetry, we anticipate that the
fundamental modes have small damping factors only if the continental slope region is very steep,
and the shelf, broad (cf. Shen ez al. 1968); indeed, we can expect almost trapped modes only for those
isolated islands with a ‘hedge region’ (Longuet-Higgins 1967, § 9), where £ increases at least as
fast as 2. In other words, for the three islands depicted in figure 15, we expect every fundamental

oy undisturbed Vo ) qﬁ/J
level
7,
4 4 4 7
(a) () ‘ (c)

Ficure 15, Meridional sections of islands displaying cylindrical symmetry: (a) concave continental slope;
(b) convex, narrow continental shelf; (¢) convex, broad continental shelf.

trapped-wave mode of () to be more heavily damped than the corresponding mode of (b) which,
in turn, will be more heavily damped than the corresponding mode of (¢). Finally, I do not
consider the influence of the different topographies on the higher-order ‘trapped-leaky’ modes
at each n, for these modes play a minor role in the dynamics of the water region over the shelf.

These ideas concerning the influence of the shelf topography on the various fundamental
trapped wave-modes are consistent with the results of previous theoretical studies on the ampli-
fication of shallow-water waves at circularly symmetric islands. For example, Webster & Perry
(1966) (also see Adams 1969) have computed the amplitude of the disturbance at the bow of the
island (the point 6 = 180° in §4), caused by the incidence of simple-harmonic plane-wave
radiation on the island-shelf complex from the ocean; they calculate the response as a function
of the frequency of the incident waves, for various values of both the curvature of the sloping
shelf and of the ratio of the radius of the island at sea level to that at the sea floor. We anticipate
peaks in each amplitude response curve when the frequency vy, (= 2n7,/A, where A = wavelength
of incident waves, 7, = radius of island at sea floor) of the incident waves satisfies a condition
similar to (4.10), where £, is the frequency of a fundamental mode for the complex; as v, increases
the peaks will correspond, respectively, to the fundamental mode at n = 1,2, .... Moreover, the
maximum value of each peak will be inversely proportional to the rate of damping of the mode,
whereas the width of the peak will be directly proportional to the same quantity. The graphs o
Webster & Perry (1966) verify that the maxima are small (large) both when the slope is concave
(convex) (as in, respectively, figures 154, ¢) and when the shelf region is narrow (wide). In inter-
preting the graphs, we must remember that some modes have caustic circles on the shelf and so
will hardly be detected at the shoreline, and that, for those models where the slope is convex and
the shelf wide, the eigenfrequencies of the ‘trapped-leaky’ modes at a given value of n are close
together (see Summerfield 1969, § 6.5) causing the peaks to be much broader.
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It is now clear that the coastline amplitude response curves (to sinusoidal long-wave radiation
from uniform depth oceans) which have been computed for several simple island-shelf models
(Omer & Hall 1949; Homma 1950; Lautenbacher 1970) should be explained in terms of the
excitation of trapped wave-modes by the incident wave trains. Such an interpretation not only
clarifies the origin of the ‘peaks’ and ‘valleys’ in graphs of maximum wave amplitude versus
angular position (e.g figure 10) commented on by Lautenbacher (1970) (also see Homma 1950;
Vastano & Reid 1967), but also reveals how one can determine the frequencies at which large
responses will be observed. One has only to compute the eigenfrequencies of the fundamental
trapped wave-modes for the system.

8. FURTHER DISCUSSION; AN APPLICATION

In the previous sections, we have neglected, among other things, the effect on the trapped wave-
modes of other forms of energy loss, such as that due to viscous (laminar or turbulent) damping.
This latter question has been considered by Longuet-Higgins (1967, §§ 11, 12), and his conclusions
apply to the motions around our island-shelf complex. For the almost trapped modes (3.1), the
dissipation of energy by viscous effects will exceed that due to the nature of the topography. Thus,
although we might still expect the coastline amplitude response function (4.8) to be dominated
by the one mode (3.1) under the conditions specified in § 4, the observed amplitudes will be much
smaller than predicted.

There have been reported in the literature several laboratory studies on the amplification of
long waves by circular islands (see, for example, Weiner 1947; Laird 1935; Wong et al. 1963).
None has specifically sought to verify the existence of trapped wave-modes. Nevertheless, we
note that Williams & Kartha (1969; figure 11) observed on one occasion a large amplitude response
(at the coast) with virtually a cos 6 dependence in the azimuthal direction, and also, that they
verified Homma’s (1950) theoretical, coastline amplitude response curve for the one model where
all the necessary parameters were identical. Such results tend to substantiate our interpretation
of the shelf disturbance in terms of the excitation of trapped wave-modes.

Probably the most important effect which we have neglected up to date is the influence on the
trapped wave-modes of deviations in the bottom topography from the perfect symmetry con-
sidered here. Shen ez al. (1968) did not raise this question. On the other hand, Longuet-Higgins
(1967, § 9) pointed out that trapped wave-modes may exist for any isolated feature raised from the
sea floor provided there is at least one complete refraction path around it. The latter author also
showed that a small perturbation in the topography from the cylindrical symmetry of his model
may cause similar modes to have slightly different frequencies; the combined motions would then
produce a ‘topographically-induced’ beat in a record of the waves at a fixed point, similar to the
‘rotation-induced’ beat examined in § 6. Summerfield (1969) investigated the ‘topographic’ beat
by computing the eigenfrequencies of the trapped wave-modes for a model elliptic seamount,
similar to Longuet-Higgins’s model circular sea-mount. He found that a large beat might be
expected, even when the length of the major axis of the feature only exceeds that of the minor
axis by as little as 25 9%,. Summerfield concluded that the 3h ‘beat’ in the 6 min period wave-
phenomenon discovered in wave records from Macquarie Island (54°30’S, 158° 58’ E), which
initiated Longuet-Higgins’s original study, may well be due to the contouring of the sea floor
about the island.

In the study of sound scattering by cylinders, where the cylinder’s generators are normal to the

37-2
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plane of the incident waves, the magnitude of the parameter ka determines whether there is weak
forward scattering (ka < 1) or pronounced back-scattering with strong shadowing on the lee
side (ka > 1); k is the wave-number of the incident waves and « is the radius of the cylinder.
Regarded as a scatterer of the wave-trains (4.1), the island-shelf system (2.1) hardly perturbs
those oscillations where ka = ka, = ev < 1; the large amplitude resonances of the shelf, which can
be excited provided (4.10) is satisfied, correspond to 1 < ev < 5 (see § 3). Thus, we might expect
the wave record from a gauge fixed at the coast to be relatively free from the distortion of shelf
oscillations for those wave motions (4.1) with periods greater than 15 min (a, = 30km, /, = 4km)
(cf. Van Dorn 1970).

Finally, let us examine the power spectra of consecutive, equal length pieces of wave record
made at the coast after the passage of the straight line-pulse (5.1), i.e. seek the characteristics of
spectra of the disturbance (5.11). Suppose that each section of record is of length 77 then the
midpoints of the successive pieces subjected to spectral analysis are ¢ = $ T +1£,, 37T +1,, ... where
to( = 0) is a constant. Ignoring the transient tails in (5.11) for the moment, one can calculate that
cach free mode (3.1) contributes to the spectral density function of the pth record (p = 1,2, ...)
an amount proportional to

172 cos?nl| A2 exp {— . (2p— 1) T} dv, (8.1)
in the interval |y —£.| < 0.5dv, where 7" is defined in the same way as 7 in (5.4). Thus, provided
the spectra are computed at successive frequencies whose separation is less than that between
the frequencies of the successive fundamental (z = 1,2,3,...) trapped wave-modes (3.1), the
consecutive spectra exhibit a decrease in energy at each frequency, coupled with increasing
resolution of the ‘peaks’ due to the rapid decay of all but the fundamental almost trapped modes.
Furthermore, the sequence of spectra for different directions of travel of the line pulse resemble
one another, with slight discrepancies resulting from the cosine dependence in (8.1). On the
other hand, spectra from different islands for the same line pulse are dissimilar because the
eigenfrequencies of the respective almost trapped modes are not identical. These features can be
seen in the spectra of real wave records made following the passage of a tsunami (see, for example,
Loomis 1966, figures 3, 4, 14) which intimates that the interaction between tsunamis and small
islands might be explained in terms of the excitation of trapped wave motions; we note that the
rotation-induced split in frequency between the similar positive and negative (§ 6) trapped wave-
modes is below the limit of detection in Loomis’s spectra. This agreement with observation also
confirms that the contributions of the transient tails |R,(ay,?)| to the theoretical spectra are
negligible provided ¢, is sufficiently large.

Lastly, if the implied interpretation of the interaction between tsunamis and small islands is
correct, then we can see why tsunamis are not amplified at steep-sided islands. For these features,
the fundamental trapped wave-modes have large damping factors. It follows that the shallow
water disturbance will be of small amplitude, and will be rapidly dissipated after the tsunami
has passed.

APPENDIX A. STRAIGHT SHELF INVESTIGATION
Let x and y be horizontal Cartesian coordinates in the plane, undisturbed water surface. The
depth function (figure A 1)

hy, —a<x<0,} (A1)

B0) > i) = {7 2
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where a( > 0), 4, and %,( > k) are constants, models a shelf of uniform width a, bordered by a
straight coast along ¥ = —a, and a straight edge along x = 0. This shelf region will be referred to
as the ledge, in order to distinguish it from that around the circular island.

. y
I/\?('/></’—— x
\/;}1
7
——ag—d

7777777 77777,

coast edge

(@) (®)

Ficure A 1. The straight ledge, and its trapped wave motions: (a) section normal to the coast;
(b) plan view of wave crests (full lines).

In the present context, the most appropriate form of the expression for the wave motions
trapped on the ledge is (the real part of)

£y, ) = Aexp {i(my— o)} {fxfl:)xg)_{il(zl;;+7)}+Rexp{-—i(llx+y)} éx-—>a ;)’x < 0) } (A2)
where the differential equations (2.5) require that
3 = o?[ghy—m?, [3 = m®—o?/gh,, (A3)
and the boundary conditions (2.8), (2.9), (2.10), that
y = arctan (hyly/hyly), R = 3[1+ (hyly/hil1)?]3, (A4)
and lytanal; = (hy/hy) L. (A5)

Provided o, m, /; and [;(> 0) are all real, the expression (A 2) represents a wave motion pro-
pagated along the coast and virtually confined to the ledge. The solution is illustrated in
figure A 1. The trapping of the motion on the ledge is essentially due to the train of waves

AR exp {i(lyx +my — ot +7)} (A6)

propagated towards the ocean at the speed (gk,)? of long waves in shallow water of uniform depth
h,, meeting the edge at an angle of incidence ¢,[ = arcsinm(gh,)#/a] which exceeds the critical
angle, ¢c[ = arcsin (A,/h,)#] for the depth function (A 1) (Longuet-Higgins 1967, § 3). The waves
are internally totally reflected from the edge, the reflected waves being given by

ARexp {i(—lLix+my—ot—1y)}. (A7)

In turn, the latter are perfectly reflected from the coast into the waves (A 6). Only an ‘ exponential
fringe’ of radiation appears on the ocean side of the edge.

It will shortly be seen that the characteristic equation (A 5) has a discrete, non-empty set of
real roots for every non-zero a and m. For the present moment, we note that the equation can

37-3
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also be obtained by equating to an integral multiple of 21, the total phase-change in the waves
(A 6) and (A7) which occurs when the ledge is normally crossed and recrossed (y and ¢ held
constant) (cf. waveguide mode theory; see, for example, Budden 1961).

In this investigation of the wave-motions (A 2), we examine those modes with the same along-
edge wavenumbers as the modes (3.1), i.e. we set

m = nfas, (A8)
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F1GURE A 2. Representative graphs of (v2—n2)} tan f(v2 — n2)} (labelled T), e-2(n? — 2v2)¥ (E) and — De~2(e2% — n?)%
(F) as functions of (v®—n?)%. The eigenfrequencies of the trapped and leaky modes (A 2) are given by the
abscissae of, respectively, the finite set of points {cy,¢;,¢,} and the infinite set {s;, 54 55, ...}. B is the point

[n(1—e2)}/e, 0].
where a, is the radius of the underlying sill of the model (2.1). It follows from (A. 3) that
ayly = (2 =n?}, ayly = (n?—e2)}, (A9)

where v and ¢ are the dimensionless quantities defined, respectively, in (3.8) and (3.9). Thus,
provided that we specify f = alay, (A 10)

as the dimensionless width of the ledge, the eigenfrequencies of the perfectly trapped modes (A 2)
are the real roots of

L(v; e,B,n) = (2 —n%)itan f(v2 —n2)t — e 2(n2 —e2?)3. (A11)
The parameter £ has the range 0 < f < o0 in contrast with that of «; further, small (large) £

corresponds to a narrow (wide) ledge.
Figure A2 reveals that L has one real root, v, in the interval

krlf < (F—n?) < (k+3)m/p (k=0,1,2,..) (A12)
whenever krn/f < n(1—¢?)i/e, i.e. when
B > kneln(1—e€2)t = B, say. (A13)
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The x-component of the corresponding mode (A 2) has £ zeros in —a < x < 0, i.e. the trapped
wave motion has k nodal lines parallel to the coast on the ledge; it will be designated the £th mode.
Further, S, will be known as the cut-off ledge width for the kth mode.

12

U
" : 5 Y7 %

(a)

(b)

3

‘u' W
Sk ioad

g

I
e

2.0

4.0

| 1

Ficure A 3. The roots of L(v; 0.25, 8, 3) as functions of the ledge width . (a) Real zeros in the interval (0, 2.4);
there exist 8 curves because, according to (A 13), there are 8 cut-off ledge widths less than 2.4 (multiples of
0.2704). (b) Complex zeros corresponding to £ = 1(1)81in (A 14); f decreases to the right on each curve and the
heavy dots are spaced at intervals of 0.1 in f.

We seek the changes in the kth mode (A 2), of fixed wavenumber 7z along the edge, caused by
decreasing the width S of the ledge to zero (¢ held fixed); they can be determined from the various
relations (A 9) once the dependence of v; on S is known. With z and ¢ held fixed, S, is a constant,
and the curve labelled E in figure A2 is a fixed curve. From figure A2, it is easily seen that, as
f approaches S, from oo, the value of v;, increases from z to /e, and the angle of incidence at the
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edge of the mode’s shelf-components decreases from 4w to ¢¢; the components (A 6) and (A7)
turn at such a rate that the phase-change incurred in the crossing of the ledge compensates the
decreasing width of the latter. When £ < £, the real root v;, does not exist. However, the fore-
going analysis indicates that as f is decreased through f;, the wave components (A 6) and (A7)
will continue to turn, in which case, the former will be incident at the edge at an angle less than ¢..
It follows that there must be a refracted wave in the ocean propagated away from the edge. Thus,
the mode ‘leaks’ energy from the ledge to the ocean. Consequently, the motion must decay in
time; v, will be complex with negative imaginary part. By use of the step-by-step method of
numerical computation, it is easily verified that there does exist such a root v, of Lfor f < S, with
negative imaginary part 7, and with real part, £, approaching n/e as # approaches g, from
below. Furthermore, when S goes to zero,

by ~ k—%H= _iarctanh €
B B
the right-hand values are the large (|ev| > n) analytical zeros of L. Figure A3 plots the f-curves
of the roots v, of L(v; € = 0.25, #,n = 3) for £ = 0(1) 8. Finally, the numerical calculations reveal
that for g < B, & is virtually given by the root of

(v2—n?)itan f(v2—n?)% = — De~2(e2? —n?)E, (A 15)
where | (V3 —n?)¥ —kr/B] < /2f (see Summerfield 1969); D is an arbitrary positive constant. The

curve labelled F in figure A2 represents the right-hand side of (A 15)
Hence we see that, on any ledge, the modes (A 2) of fixed wavenumber 7 along the edge have

the property that Vo<V < .o <V <y <Epa<., (A 16)

where the jth mode is the highest-order perfectly trapped motion, i.e. j is the largest £ of (A 13) for
which the cut-offledge width is less than the actual width of the ledge. When the latter is decreased,
the jth mode (j = £, k—1, ..., 1) changes in character from a perfectly trapped wave to a ‘leaky
wave’ as f decreases through g;; for f< f;, v; is given by (A 14). Thus, when the width of the
ledge is such that # < g, the only trapped mode which can exist is the fundamental. In the limit
S = 0 this mode has the finite frequency z/e, which depends on the wavenumber along the edge,
and depth parameter e. This contrasts with the limiting behaviour for all the higher order modes,
as given by (A 14); the limit frequency depends only on the mode order. However, the limit
trapped wave frequency for these latter modes is z/e at their respective cut-off ledge widths (A 13).

(k > 1); (A1e)

AprPPENDIX B. THE ROTATION-INDUCED ‘BEAT-FREQUENCY’

On a uniformly rotating earth, the characteristic equation for the trapped wave-modes on the
ledge (A1) is (Summerfield 1969)

by _mflhy haly (b= hy) ]
[ytan czll—al2 = [h_1+hlll tanal, + A tanal, |, (B1)
where B = (02—f?)|ghy—m2, 1§ =m?—(0%—~f?)|ghy, (B2)

and m, a, h; and A, are defined in appendix A. Equation (B 1) reduces to (A 5) when f = 0.
One finds that the expression for the small change in the frequency of the £th ledge wave-mode
(A 2) when f = 0, analogous to (6.6), is

oo,

o

n
=0 RS =) 14 AL+ =)

(B3)
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where 7, €, # and v;, are the dimensionless variables of appendix A. Since the square-bracketed
term in (B 3) is positive for n < v, < n/e, it follows that the root of (B 1) (< 0) near the real root
oy, of (A 5) is, in general, real, and is greater or less than ¢, (in magnitude) according as sgn (nf]o;,)
is positive or negative. In other words, the positive (negative) perfectly trapped wave-motion
(A2) has a greater (smaller) frequency than when the Earth’s rotation is not included in the

TaBLE A 1. ACCURATE VALUES OF THE FREQUENCIES AND ROTATION-INDUCED BEAT FREQUENCIES
(DIVIDED BY f) OF THE FUNDAMENTAL LEDGE WAVE-MODES (A 2) AT n = 1, 3, 5, 7, WHEN

¢ = 0.25
\\n 1 3 5 7
B\ Vo (B 3) Yo (B 3) Vo (B 3) Vo (B 3)

0.01 3.9998  0.0094 11.9952  0.0282 19.9776  0.0473 27.9372  0.0669
0.02 3.9993  0.0188 11.9804  0.0571 19.9044  0.0975 277149 0.1415
0.04 3.9972  0.0377 11.9142  0.1190 19.5039  0.2157 26,1571 0.3137
0.06 3.9935  0.0571 117743 0.1900 18.3730  0.3310 22.2743  0.3482
0.08 3.9881  0.0769 11.5033  0.2678 16.3475  0.3514 18.4990  0.3301
0.10 3.9809  0.0975 11.0238  0.3310 14.2713  0.3355 15.8181  0.3285
0.20 3.9008  0.2157 7.5558  0.3284 8.8841  0.3388 10.2555  0.3409
0.40 3.2695  0.3514 47762 0.3422 6.2813  0.3178 7.9830  0.2734
0.60 2.5186  0.3284 3.9214  0.3276 5.6183  0.2626 7.4597  0.2082
0.80 2.0594  0.3317 3.5572  0.2958 5.3602  0.2160 7.2641  0.1647
1.00 1.7768  0.3388 3.3710  0.2628 52350  0.1812 7.1709  0.1353
2.00 1.2563  0.3178 3.0990  0.1552 5.0605  0.0971 7.0435  0.0703
3.00 1.1237  0.2626 3.0447  0.1073 5.0271  0.0657 7.0194  0.0472
4.00 1.0721  0.2160 3.0253  0.0816 5.0153  0.0496 7.0110  0.0355
5.00 1.0470  0.1812 3.0163  0.0657 5.0098  0.0398 7.0070  0.0285

10.00 1.0121  0.0971 3.0041  0.0332 5.0025  0.0200 7.0018  0.0143

model. Furthermore, the rotation-induced ‘beat-frequency’ Ao, between the positive and
negative kth modes of the same along-edge wavenumber  is virtually f times the quantity (B 3).
The latter expression clearly shows that, regarded as a function of £ (n, ¢ and £ held fixed), Ao,

has the properties . b .
limAcy = (> n);  lim Agy, = (v nfe), (B4)
f—>0 nﬂ B—pit

where £}, is the mode’s cut-off ledge width (A 13). The values of (B 3) in table A1 demonstrate
these properties for the fundamental (£ = 0) mode; note that 8, = 0. Some further effects of the
Coriolis forces on the trapped ledge wave-modes are described in Summerfield (1969).

We also note that, besides the zeros corresponding to the positive and negative inertio gravity-
waves (A2), equation (B1) (f= 0) has another real root, where mfJo < 0, and, in general,
|o[f| < 1, which does not have an analogue in (A 5). In the limit a = oo, the latter zero corre-
sponds to the double Kelvin wave (Longuet-Higgins 1968), of wavenumber m along the edge,
trapped along the discontinuity in depth between the oceans of uniform depths %, and 4,. One
can infer the influence on the double Kelvin wave of the shallower water being of finite extent
in the direction normal to the edge, by tracing this root in (B 1) as a is decreased (m, f, h; and &,
held fixed). There results a simple relation, which will be presented in a future paper, between
continental shelf wave (e.g. Robinson 1964; Mysak 1967), Kelvin wave (Thomson 1879) and
double Kelvin wave motions (Longuet-Higgins 1968). Munk et al. (1970, § 4.3) have analysed the
motions for the case where m is variable (q, f, £, and £, held fixed).
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